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Abstract 
What and how do people learn about visual appearance from 
language? We test the hypothesis that in the absence of sensory 
evidence, people born blind use abstract causal knowledge to 
infer object appearance. Congenitally blind (n=19) and sighted 
adults (n=59) reported how many colors two types of artifacts 
were likely to have: artifacts for which having many colors is 
intended to facilitate function (n=30, e.g., fairytale book, fruit 
candies), and artifacts for which colorfulness is irrelevant or 
distracting (n=30, e.g., instructional manual, painkillers). The 
number of colors estimated per object was highly correlated 
across groups. Blind and sighted people assigned more colors 
to artifacts for which colorfulness facilitates function and 
appealed to makers’ intentions in open-ended explanations. A 
text-only version of GPT-4 generated similar but non-identical 
colorfulness estimates compared to humans. Our findings 
suggest that people infer the appearance of unseen objects 
using causal ‘intuitive theories’ informed by linguistic 
evidence. 

Keywords: causal reasoning; cognitive development; 
concepts and categories; intelligent agents; language and 
thought 

Introduction 
Language provides rich information about the sensory world. 
Languages of the world have large ‘sensory lexicons’ (e.g., 
‘blue,’ ‘round,’ ‘rough’; Viberg, 1983; Levinson & Majid, 
2014; San Roque et al., 2015; Winter et al., 2018). Recent 
work with large language models (LLMs) trained exclusively 
on text suggests that sensory information can be acquired 
from language alone. For instance, LLMs can report the 
colors of common objects (e.g., strawberries are red), 
reconstruct color similarity space (e.g., red is more similar to 
orange than to green) and ‘draw’ approximate object shapes 
(Abdou et al., 2021; Patel & Pavlick, 2022; Sharma et al., 
2024; Marjieh et al., 2022, 2024; Mukherjee et al., 2024).  

Evidence from people born blind suggests that humans can 
also acquire knowledge about appearance from language 
(Marmor, 1978; Zimler & Keenan, 1983; Landau & 
Gleitman, 1985; Shepard & Cooper, 1992; Connolly et al., 
2007; Lenci et al., 2013; Saysani et al., 2018, 2021; Kim et 
al., 2019, 2021; Bedny et al., 2019; Wang et al., 2020; 

Hauptman, Elli, et al., 2025). Landau and Gleitman (1985) 
showed that a 4-year-old blind child, Kelli, knew that color is 
a property of physical objects perceptible only with the eyes. 
Blind and sighted adults have shared knowledge of color 
similarity space, use similar color labels for some common 
objects (e.g., strawberries are red), and have shared intuitions 
about how object color varies across instances (e.g., two 
strawberries are more likely to be the same colors than two 
cars; Marmor, 1978; Shepard & Cooper, 1992; Saysani et al., 
2018, 2021; Kim, et al., 2019, 2021). Although other senses, 
such as audition and touch, can provide information about 
visual experience via analogy, visual phenomena like color 
have no auditory or tactile analogs, pointing to language as 
an important source of information.  

A key outstanding question is how people learn visual 
information from linguistic evidence. Knowledge of visual 
appearance can be learned in part from explicit descriptions, 
such as, ‘Skittles are small, round, and smooth-coated candies 
that come in a variety of bright colors, including red, orange, 
and green’ (GPT-4). Knowledge of one object’s appearance 
(e.g., Skittles) can also be generalized to a broader category 
(e.g., fruit-flavored candy) or other related examples (e.g., 
M&Ms). Many modern accounts of how sensory information 
is learned from language emphasize tracking co-occurrence 
statistics of words (e.g., ‘yellow’ occurs with ‘banana,’ ‘ripe’ 
occurs with ‘banana,’ therefore ‘yellow’ and ‘ripe’ are 
related; Lewis et al., 2019; Lupyan & Lewis, 2019; Ostarek et 
al., 2019; Liu et al., 2025; see also Grand et al., 2022). 

However, human learning often goes beyond the surface 
properties of the evidence. Children and adults use causal 
mental models, also called ‘intuitive theories,’ to infer unseen 
properties of objects, such as what objects contain on the 
inside based on whether they are natural kinds or artifacts 
(Ortony & Medin, 1989; Gelman, 2003; Keil, 1989, 1992; 
Bloom, 1996; Kelemen, 1999; see also Wellman & Gelman, 
1992; Gopnik & Meltzoff, 1997; Tenenbaum et al., 2007; 
Carey, 2011; Gerstenberg & Tenenbaum, 2016). Even young 
children know that an object’s appearance is related to deeper 
causal properties (Gelman & Wellman, 1991; Rosengren et 
al., 1991; Springer & Keil, 1991; Gopnik et al., 2001; Matan 
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& Carey, 2001; Greif et al., 2006; Gelman, 1998). For 
instance, children prefer biological explanations for how 
flowers get their colors (e.g., because of sun and rain) but 
intentional explanations for how cans get their colors (e.g., 
because someone wanted them to be that color; Springer & 
Keil, 1991). Such knowledge allows children to make 
predictions about unobservable properties from sensory 
evidence, e.g., if it looks like a machine, it was likely made 
by a person. 

We hypothesized that when learning about visual 
appearance from language, people born blind reverse-
engineer this approach: they generatively infer appearance 
information not accessible through sight from deeper object 
properties. In particular, we tested the hypothesis that for 
man-made objects (i.e., artifacts), people born blind use the 
makers’ intentions to infer how colorful an object is likely to 
be. Consider the case of a handful of fruit candies. How many 
colors is it likely to have: 1, 5, or 70? Some of these answers 
seem more probable than others: the colors of fruit candies 
often communicate different flavors (of which there are 
typically a few). Likewise, a fairy tale book is designed to be 
colorful to entertain and capture the attention of children, 
whereas an instructional manual is less colorful so as to not 
distract from its content. In the current study, we tested 
whether people born blind would use information about an 
artifact’s intended function to infer its colorfulness.   

We presented congenitally blind and sighted adults with 
labels of artifacts (e.g., ‘a fairy tale book’) and asked them to 
estimate how many colors (i.e., ‘colorfulness’) each object 
was likely to have. For half of the objects, like the fairy tale 
book, colorfulness is intended to facilitate function, and for 
the other half, colorfulness is either not relevant or obtrusive 
to function (e.g., an instructional manual).  

A separate group of participants rated each of the objects 
on the degree to which having many colors was useful to its 
function. These ratings were used to validate the object 
conditions and to predict participants’ estimates of 
colorfulness item-by-item. 

While sighted people could estimate the number of colors 
an object has based on their visual experience, people born 
blind cannot. We hypothesized that blind people would 
estimate an object’s colorfulness using causal intuitions 
about the relationship between object colorfulness and 
function (e.g., colorfulness facilitates function by enhancing 
communicability or aesthetic appeal). If so, we predicted that 
i) blind and sighted people’s colorfulness estimates would be 
correlated, ii) blind people would assign more colors to 
artifacts for which having many colors facilitates function, 
and iii) blind (and sighted) people would invoke the makers’ 
intentions when asked to provide open-ended explanations 
for their colorfulness estimates. 

To offer further evidence that language could serve as a 
source of information about colorfulness, we presented the 
same task to an LLM trained exclusively on text (GPT-4). 
Unlike blind people, LLMs do not have access to other 
sensory information. Thus, if GPT-4 can produce human-like 
judgments of colorfulness, this suggests that colorfulness 

information can be extracted from language. Whether GPT-4 
learns something like a causal model of appearance or instead 
uses vast amounts of linguistic data and memory resources to 
mimic human-like performance remains an open question, to 
which we return in the Discussion. 

Method 

Participants 
Nineteen congenitally blind adults (14 women, 5 men; age 
range 20-75 years, M = 40.9 ± 15 SD) and fifty-nine sighted 
age- and education-matched controls (37 women, 20 men, 2 
non-binary people; age range: 21-71 years, M = 40.15 ± 11 
SD) participated in the study. The sighted group consisted of 
two samples (n=19, n=40). The second sample was used as a 
reference group in correlation analyses. Sample size was 
comparable to prior studies with blind participants (e.g., 
Saysani et al., 2018; Kim et al., 2021) and was confirmed by 
a power analysis.  

Blind participants lost their sight due to pathologies of the 
eyes or optic nerve anterior to the optic chiasm (i.e., not due 
to brain damage), and had at most minimal light perception 
since birth. All participants were screened for cognitive and 
neurological disabilities (self-report).  

Blind participants completed the study in-person at the 
National Federation of the Blind National Convention and 
were compensated $30 per hour. Sighted participants 
completed the study online via Prolific and were 
compensated $13 per hour. Experimental procedures were 
reviewed and approved by the Johns Hopkins University 
Homewood Institutional Review Board. 

Stimuli 
Artifacts were organized into two conditions. Colorfulness-
Intent (Intent) artifacts were those for which having many 
colors is intended to facilitate function by communicating 
information (e.g., candy flavor) or appealing to the aesthetic 
preferences of an intended audience (e.g., children) (n=30). 
No-Colorfulness-Intent (No-Intent) artifacts were those for 
which colorfulness is not intended to facilitate function; in 
other words, colorfulness is either irrelevant or obtrusive to 
function (e.g., instructional manual, mild painkillers) (n=30). 
Artifact descriptions were created in Intent/No-Intent pairs 
across conditions to control for shape. For example, fairy tale 
book and instructional manual formed a pair (‘book’), and 
fruit candies and mild painkillers formed a pair (‘capsules’).  

In an online study (n=20), a separate group of sighted 
participants rated how helpful having many colors is to the 
function of each object on a scale from 1 (not helpful) to 7 
(very helpful). Intent objects received significantly higher 
‘helpful-to-function’ ratings than No-Intent objects (F(1,19) = 
24.41, p < .001). These ratings were also used in correlation 
analyses to predict object colorfulness estimates item-by-
item for both blind and sighted participants. If participants are 
using helpfulness-to-function to estimate number of colors, 
then these metrics should be correlated. 
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Figure 1: Shared knowledge of artifact colorfulness across groups. Panel A: Participants. The sighted group consisted of one 
sample of equal size to the blind group (n=19), collected first, and a larger reference sample (n=40). Panel B: Experimental 
design. Seven example artifact pairs (out of a total of 30 pairs) are shown for display purposes. Panel C: Item-wise correlations 
(Spearman’s rho ρ) of normalized colorfulness judgments across groups. ρ values denote correlations between averaged group 
responses (e.g., average sighted vs. average blind). Confidence intervals (95%) are indicated via shading. In the plots displaying 
correlations with GPT-4, one outlier is excluded (‘tape for scrapbooking’: GPT-4: 4.75, sighted: -0.57, blind: 0.5). 
 

Procedure 
Participants provided open-ended numerical estimates of 
how many colors artifacts were likely to have (Figure 1A-B). 
The experiment had two parts. First, participants were 
presented with artifact labels one at a time and were asked to 
guess the number of colors each artifact was likely to have. 
All analyses of colorfulness judgments were performed using 
these initial judgments, which were made before the other 
components of the experiment were known to the 
participants.  

In the second part of the experiment, we asked participants 
to guess the number of colors again, rate their confidence on 
a scale from 1 (not at all confident) to 7 (very confident), label 
the colors of the artifacts, and explain the reasoning behind 
their answers. Each participant was asked about 15 artifacts 
per condition (15 Intent, 15 No-Intent) in one of four 
versions, counterbalanced across participants, such that 
individual participants were not asked about both artifacts 
within a given Intent/No-Intent pair. 

We also interrogated a text-only version of GPT-4 (gpt-4-
0613, temperature=0.5) using the same task. Each artifact 
description was presented one at a time along with the same 

set of questions we asked human participants. No further 
information was provided. 

Analyses 
Colorfulness judgments were standardized (z-scored to 
mean=0 ± 1 SD) within each participant to account for 
individual differences. To assess agreement in colorfulness 
judgments within and across groups, we performed 
Spearman’s rho (ρ) rank correlations. We first asked whether 
participant groups agreed about the degree of colorfulness of 
all artifacts. Colorfulness judgments made by each 
participant in the blind and sighted groups (both n=19) were 
correlated with judgments averaged across members of the  
sighted reference group (n=40) and judgments made by GPT-
4. The significance of these correlations was then tested using 
Student’s t-tests and ANOVAs that modeled the Fisher-Z 
transformed single-subject correlations. To assess agreement 
within the blind group, we calculated Kendall’s coefficient of 
concordance (W) to account for the fact that there was no 
blind reference group. 

Next, we asked whether participant groups agreed about 
differences in the number of colors assigned to artifacts 
within Intent/No-Intent pairs (e.g., ‘fairy tale book’ minus 
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‘instructional manual’). We correlated average artifact pair 
differences for each group.  

Finally, to assess agreement in the use of color labels 
across groups, we selected the most frequent color labels 
(n=13 color labels; accounting for 97% of all labels) used by 
blind and sighted participants combined. We then correlated 
across groups the relative differences in the use of these 
labels for Intent vs. No-Intent artifacts.  

Results 

Blind and sighted people agree about how many 
colors objects have  
The number of colors generated per object (i.e., colorfulness 
judgments) were highly correlated across the two sighted 
samples, suggesting shared intuitions among sighted people 
(sighted vs. sighted reference, average of individual 
participants’ correlation values: ρ = .72 ± 0.15 SD; one 
sample t-test: t(18) = 13.65, p < .001; Figure 1C). Colorfulness 
judgments of blind and sighted people were also significantly 
correlated (average of individual participants’ correlation 
values: ρ = .59 ± 0.14 SD; t(18) = 13.76, p < .001), though less 
so than between the two sighted samples (two-sample t-test,             
t(36) = -3.02, p = .005). Blind participants also showed high 
within-group agreement (blind: Kendall’s W = .54, p < .001, 
sighted: W = .57, p < .001). These results suggest that first-
person sensory access is not required to estimate how many 
colors an object has. 

Blind and sighted people infer object colorfulness 
from intended function  
Both sighted and congenitally blind participants judged 
Colorfulness-Intent (Intent) artifacts to have more colors than 
No-Colorfulness-Intent (No-Intent) artifacts (subject-wise 
repeated measures ANOVA, 2 conditions (Intent, No-Intent) 
x 2 groups (sighted, blind): main effect of condition,         
F(1,36) = 441.29, p < .001; Figure 2).  

 

 
 
Figure 2: Average item-wise colorfulness judgments across 
groups. Average non-normalized judgments for all 60 
artifacts are displayed for each group. Paired artifacts (e.g., 
‘fairy tale book,’ ‘instructional manual’) are connected by 
lines. 

 
 
Figure 3: Color label use across groups and conditions. The 
size of each color label denotes its relative frequency within 
participant groups and conditions. 
 

All groups assigned more colors to artifacts for which 
colorfulness is intended to facilitate function (i.e., 
Colorfulness-Intent artifacts; all ps < .001). This effect was 
highly significant in each group and statistically identical 
across groups (group by condition interaction, F(1,36) = 0.03, 
p = .88; main effect of group, F(1,36) = 1, p = .32).   

In both groups, colorfulness judgments were highly and 
equally correlated with ratings of how helpful colorfulness is 
to function collected in a separate online study (sighted:           
ρ = .84, p < .001, blind: ρ = .82, p < .001). These results 
support the hypothesis that people born blind use this 
information to predict the number of colors an object is likely 
to have.  

Further evidence for the idea that blind people can infer 
colorfulness from intention comes from analyses of item-
wise variation. Since items within a pair were matched on 
shape, differences in the number of colors assigned within 
Intent/No-Intent pairs offers a more fine-grained test of 
whether the degree to which colorfulness facilitates function 
influences estimates of colorfulness. Difference scores were 
highly correlated across the sighted samples (ρ = .86, p < 
.001) and were also correlated across sighted and 
congenitally blind people (ρ = .51, p = .004). Notably, the two 
sighted samples exhibited numerically higher agreement than 
sighted and blind participants, suggesting that sighted people 
may rely partially on visual memory when making 
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colorfulness judgments, whereas people born blind may rely 
more on inferences about intention. 

Finally, we observed numerical differences in the color 
labels that blind and sighted people used across Intent and 
No-Intent artifacts, whereby brighter colors (e.g., blue, red, 
green) were produced more often for Intent artifacts and 
neutral colors (e.g., black, white) were produced more often 
for No-Intent artifacts (Figure 3). Differences in color label 
use across conditions was highly consistent across groups                 
(ρ = .98, all ps < .001). 

Together, these results suggest that people born blind infer 
colorfulness of artifacts by appealing to the intentions of the 
maker (e.g., fairy tale books are colorful because they are 
intended to capture the reader’s attention; Table 1). 

 
Table 1: Example explanations from each group. For each 
object, participants were asked, “why did you choose that 
number of colors?”  
 

 Fairy tale book Instructional manual 

Sighted The ones we own 
are colorful. 

They are usually not 
too colorful from 
my experience. 

Blind They are usually 
geared toward 
children, and colors 
grab a kid’s 
attention. 

It would have to 
have one color to be 
easy to find among 
other booklets. 

GPT-4 Most have colorful 
illustrations to 
make the stories 
more engaging. 

Most I’ve seen 
usually have a base 
color, a color for 
accents, and black 
text. 

 

Humans and GPT-4 generate similar but non-
identical colorfulness judgments 
To provide additional insight into the extent to which 
colorfulness information is available in linguistic data, we 
interrogated a text-only version of GPT-4 using the same 
task. Unlike blind people, GPT-4 lacks access to sensory 
information, including from touch, audition, and smell. If 
GPT-4 nevertheless produces similar colorfulness estimates 
to humans, this would suggest that language contains relevant 
information about object colorfulness. 

Colorfulness judgments were significantly correlated 
across human participants and GPT-4, an LLM trained 
exclusively on text (blind vs. GPT-4, average of individual 
blind participants’ correlation values: ρ = .5 ± 0.16 SD; 
sighted vs. GPT-4: ρ = .5 ± 0.12 SD, both ps < .001). 
Correlations between human groups (blind vs. sighted 
reference, sighted vs. sighted reference) were higher than 
correlations between humans and GPT-4 (main effect of 

comparison group (sighted reference, GPT-4), F(1,36) = 54.45, 
p < .001). This finding suggests that although GPT-4 can 
acquire information about artifact colorfulness from 
language, it does not fully capture human performance. 

Like blind and sighted people, GPT-4 assigned more colors 
to artifacts for which colorfulness is intended to facilitate 
function. (Figure 2; Intent vs No-Intent artifacts t(58) = 4.56,    
p < .001). The size of this effect was not different between 
GPT-4, and the human groups (item-wise repeated measures 
ANOVA, 2 conditions (Intent, No-Intent) x 3 groups 
(sighted, blind, GPT-4), group by condition interaction, 
F(2,116) = 0.27, p = .76; main effect of group, F(2,116) = 0,              
p = 1). 

Differences in the number of colors within Intent/No-Intent 
pairs were also correlated across GPT-4 and congenitally 
blind participants (GPT-4 vs. congenitally blind: ρ = .6,           
p < .001). Interestingly, colorfulness difference scores were 
not correlated across GPT-4 and sighted participants (GPT-4 
vs. sighted: ρ = .23, p = .21). However, as reported above, 
blind and sighted people’s difference scores were correlated 
(ρ = .51, p = .004). This pattern of results suggests that blind 
people and GPT-4 learn object colorfulness from language in 
partially different ways. 

In sum, our findings from a text-only version of GPT-4 
suggest that linguistic evidence contains information about 
the number of colors objects have, but that humans and large 
language models do not learn this information the same way. 

Discussion 
We find that blind and sighted people living within the same 
cultural context show high agreement about how many colors 
an artifact is likely to have. Sighted adults likely base their 
colorfulness judgments in part on common visual 
experiences. Consistent with this idea, they agree more with 
each other than with congenitally blind people or a text-
trained LLM. Sighted participants also appeal to their 
experiences with real objects when explaining their 
colorfulness judgments (e.g., ‘I said that fairy tale books have 
nine colors because the fairy tale book I own has that many 
colors’). By contrast, people born blind acquire their 
knowledge of object colorfulness from linguistic evidence. 

How do people and machines learn how many colors an 
object is likely to have from language? As noted in the 
Introduction, some ‘visual’ information can be learned from 
explicit descriptions. For example, most blind people agree 
that school buses are yellow, which can only be learned as an 
explicitly stated fact (Kim et al., 2021). However, learning 
appearance only from explicit descriptions or even by 
generalizing from explicit descriptions of one object to 
another has limitations. Stated color facts are only useful for 
previously encountered objects, or objects that are similar to 
those objects.  

Relying exclusively on such fact-based learning is feasible 
for LLMs, which are trained on vast amounts of linguistic 
data and have better memory capacities but is less reliable for 
humans. Blind and sighted people often disagree on arbitrary 
object-color mappings (e.g., in one study, 50% of blind 
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participants and 100% of sighted participants labeled bananas 
yellow and polar bears white; Kim et al., 2019; 2021). By 
contrast, modern LLMs readily generate the colors of objects 
that align with the intuitions of sighted people (e.g., Liu et al., 
2025). For example, text-trained GPT-4 produces ‘brown’ for 
aardvarks and ‘pink’ for axolotls. However, LLMs that are 
more modest in size also sometimes do not acquire sighted-
like object-color pairings, and, unlike blind people, also 
appear to be fooled by raw frequency statistics (i.e., 
uncommon colors are named more frequently, such as ‘green’ 
for banana; Liu et al., 2025). 

The current evidence suggests that in addition to using 
learning mechanisms that rely on explicitly stated descriptive 
facts, humans also rely on a generative approach to infer 
unobservable perceptual properties of objects using intuitive 
theories of why objects appear the way they do. In particular, 
we find that blind adults provide higher colorfulness 
estimates for objects for which colorfulness is intended to 
facilitate function and also appeal to the intentions of the 
makers in their explanations.  

The current results are consistent with prior evidence that 
blind and sighted people tend to agree about visual 
knowledge that can be inferred from deeper causal properties 
(Kim et al., 2019; 2021). For example, blind and sighted 
people have similar intuitions about how object color varies 
across tokens (e.g., two stop signs are more likely to be the 
same color than two cars), an aspect of appearance that can 
be explained by the causal relationship between object 
function and appearance (i.e., object color is less likely to 
vary when it is relevant to function; Kim et al., 2021). Here 
we suggest that an analogous mechanism is used to infer the 
colorfulness of individual object tokens. In addition to being 
less mnemonically costly, a generative approach also enables 
inferences about objects that are very different from those 
previously encountered in the evidence, including novel 
objects.  

A key open question is how linguistic evidence is used to 
construct causal models of appearance, including models of 
how color is used to entertain, impress, distract, inform, and 
capture the attention of others. Another open question is 
whether LLMs acquire something like causal models of 
object colorfulness and, like humans, use such models to infer 
appearance. Because LLMs like GPT-4 have memory 
capacities and access to more data compared to human 
learners, it is also highly plausible that they mimic human 
inference using more ‘memory-based’ approaches (Bender & 
Koller, 2020; Warstadt & Bowman, 2022; Frank, 2023; Kauf 
et al., 2023; Lake & Murphy, 2023; McCoy et al., 2024). 
Although GPT-4’s colorfulness judgments were significantly 
correlated with those of humans in the current study, its 
judgments for some items (e.g., scrapbooking tape) were 
distinctly not human-like. Endowing LLMs with causal 
models of appearance as a form of inductive biases during 
training may enable the creation of AI models that bridge 
language and vision in human-like ways. 

In summary, the current study demonstrates that 
knowledge of visual appearance, specifically artifact 

colorfulness, can be learned from language alone. However, 
our findings also suggest that for humans, learning from 
language is mediated by causal mental models of the world, 
i.e., ‘intuitive theories.’ These intuitive theories are 
themselves shaped by linguistic evidence and enable 
generative inferences about sensory information in the 
absence of first-person experience.   
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