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A B S T R A C T

The ‘different-body/different-concepts hypothesis’ central to some embodiment theories proposes that the sen-
sory capacities of our bodies shape the cognitive and neural basis of our concepts. We tested this hypothesis by
comparing behavioral semantic similarity judgments and neural signatures (fMRI) of ‘visual’ categories (‘living
things,’ or animals, e.g., tiger, and light events, e.g., sparkle) across congenitally blind (n = 21) and sighted (n =

22) adults. Words referring to ‘visual’ entities/nouns and events/verbs (animals and light events) were compared
to less vision-dependent categories from the same grammatical class (animal vs. place nouns, light vs. sound,
mouth, and hand verbs). Within-category semantic similarity judgments about animals (e.g., sparrow vs. finch)
were partially different across groups, consistent with the idea that sighted people rely on visually learned in-
formation to make such judgments about animals. However, robust neural specialization for living things in
temporoparietal semantic networks, including in the precuneus, was observed in blind and sighted people alike.
For light events, which are directly accessible only through vision, behavioral judgments were indistinguishable
across groups. Neural responses to light events were also similar across groups: in both blind and sighted people,
the left middle temporal gyrus (LMTG+) responded more to event concepts, including light events, compared to
entity concepts. Multivariate patterns of neural activity in LMTG+ distinguished among different event types,
including light events vs. other event types. In sum, we find that neural signatures of concepts previously
attributed to visual experience do not require vision. Across a wide range of semantic types, conceptual repre-
sentations develop independent of sensory experience.

1. Quotations

“Critics delight to tell us what we cannot do. They assume that
blindness and deafness sever us completely from the things which the
seeing and the hearing enjoy, and hence they assert we have no moral
right to talk about beauty, the skies, mountains, the song of birds, and
colours. They declare that the very sensations we have from the sense of
touch are “vicarious,“ as though our friends felt the sun for us! They
deny a priori what they have not seen and I have felt. Some brave
doubters have gone so far even as to deny my existence. In order,
therefore, that I may know that I exist, I resort to Descartes’s method: “I
think, therefore I am.“ Thus I am metaphysically established, and I
throw upon the doubters the burden of proving my non-existence.” –
Helen Keller (1908).

The first of the three themes of embodied cognition, according to the
Stanford Encyclopedia of Philosophy: “The properties of an organism’s
body limit or constrain the concepts an organism can acquire. That is,
the concepts by which an organism understands its environment depend
on the nature of its body in such a way that differently embodied or-
ganisms would understand their environments differently.” – Stanford
Encyclopedia of Philosophy (Shapiro & Spaulding, 2021).

2. Introduction

Within the first weeks of life, infants identify living things by looking
for faces, bodies, and biological motion (Opfer & Gelman, 2011; Simion
et al., 2008; Spelke, 2022). Watching animals such as elephants and blue
jays offers information about their shape, color, texture, and behavior
(e.g., de Vries, 1969; Massey & Gelman, 1988; Setoh et al., 2013). Some
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conceptual categories, like light events (e.g., ‘sparkle’, ‘glow’) and colors
(e.g., ‘blue’, ‘yellow’), can only be directly experienced through vision.
Vision is an important source of direct sensory evidence about many
conceptual categories. Here we ask how visual experience contributes to
the cognitive and neural basis of concepts.

Many embodied accounts of cognition propose that the sensory ca-
pacities of our bodies constrain the concepts we can entertain (e.g.,
Barsalou, 1999; Lakoff & Johnson, 1980, 1999; Tucker & Ellis, 1998;
Glenberg & Kaschak, 2002; Thompson-Schill et al., 1999; Casasanto,
2009; Shapiro & Spaulding, 2021; see also Locke, 1690; Hume,
1739/1978; Berkeley, 1732). Laurence and Margolis (2024) dub this the
‘different-body/different-concepts hypothesis.’ Neurally, such theories
propose that concepts are represented in the modality-specific sensory
systems though which they were acquired. Consistent with this idea, a
large neuroimaging literature suggests that conceptual retrieval acti-
vates sensory regions of the brain (Thompson-Schill, 2003; Barsalou,
2008; Meyer & Damasio, 2009; Pulvermüller & Fadiga, 2010; Kiefer &
Pulvermüller, 2012; Meteyard et al., 2012; Yee & Thompson-Schill,
2016; Martin, 2016; Reilly et al., 2024; Tyler & Moss, 2001; Barsalou
et al., 2003; Barsalou, 2010; Pulvermüller, 2001; Gallese& Lakoff, 2005;
Zwaan, 2014). Color words activate visual color areas, motor words
motor control regions, and auditory words auditory cortices (Martin
et al., 1995; Chao & Martin, 1999; Hauk et al., 2004; Wallentin et al.,
2005; Simmons et al., 2005; Beilock et al., 2008; Hoenig et al., 2011;
Fernandino et al., 2016; Simmons et al., 2007; Halpern et al., 2004;
Kiefer et al., 2008; Kemmerer et al., 2008; Kuhnke et al., 2020). One
interpretation of these data is that the sensory means through which
concepts are acquired shapes their cognitive and neural basis.

Sensorimotor experiences can differ widely across people. One
question is whether such differences lead to different conceptual rep-
resentations. Unlike experts in music or a particular sport, whose sen-
sory experience differs from that of non-experts in nuanced ways,
congenitally blind individuals lack visual experience entirely. Even so,
behavioral studies find shared use of ‘visual’ words across blind and
sighted people (Marmor, 1978; Zimler & Keenan, 1983; Landau &
Gleitman, 1985; Shepard & Cooper, 1992; Connolly et al., 2007; Lenci,
Baroni, Cazzolli, &Marotta, 2013; Saysani et al., 2018; Kim et al., 2019;
Bedny et al., 2019; Wang et al., 2020; Kim et al., 2021). For instance,
Landau and Gleitman (1985) found that a congenitally blind child, Kelli,
understood and produced verbs like ‘look’ and ‘see’ as well as color
words (e.g., ‘green’) around the same age as sighted children do.
Congenitally blind adults make subtle distinctions among verbs that
refer to light events based on light intensity and periodicity (e.g.,
‘sparkle’ vs. ‘flash’; Lenci et al., 2013; Bedny et al., 2019). Blind and
sighted people share knowledge of large animal appearance (e.g., what
is the shape and size of a tiger?), despite the fact that direct sensory
access to large animals is primarily visual (Kim et al., 2019). Blind and
sighted people have similar intuitions about how color varies across
object tokens (e.g., two pieces of paper are more likely to have the same
color than two cars) (Kim et al., 2021) and about the similarity space of
colors (e.g., orange is more similar to red than to green) (Marmor, 1978;
Saysani et al., 2018; Shepard & Cooper, 1992). Thus, seemingly visual
information is acquired by humans who do not have direct sensory ac-
cess to it.

People born blind could acquire ‘visual’ knowledge in a variety of
ways, including by analogy to other senses (e.g., touch, audition), but
humans are prodigious social learners, and learning through language
likely makes a significant contribution to visual knowledge in blindness.
Indeed, languages of the world convey rich information about the

senses. English has a large ‘visual’ lexicon (Levinson &Majid, 2014; San
Roque et al., 2015; Sweetser, 1990; Viberg, 1983; Winter et al., 2018).
Recently, large language models (LLMs) have aptly demonstrated that
semantic representations of ‘sensory’ information can be acquired via
language alone (Abdou et al., 2021; Patel & Pavlick, 2022; Li et al.,
2021; Wei et al., 2022; Sharma et al., 2024; Gurnee & Tegmark, 2024;
Marjieh et al., 2022, 2024). For example, LLMs can reconstruct the
similarity space of colors (e.g., red is more similar to orange than to
blue), the spatial locations of US states on a map, and object shapes
(Abdou et al., 2021; Gurnee & Tegmark, 2024; Marjieh et al., 2024;
Sharma et al., 2024).

Exactly how much humans learn about vision from language and
what kinds of representations are acquired from language remain open
questions. Compared to LLMs, humans have more modest memory re-
sources and access to far less linguistic data (Warstadt& Bowman, 2022;
Frank, 2023). It has also been suggested that precisely because LLMs
learn from language alone, their representations are shallow (Lake &
Murphy, 2023; Bender & Koller, 2020; but see Chalmers, 2024). Some
differences in visual knowledge have been observed across blind and
sighted people in prior behavioral studies. Although color similarity
judgments (e.g., orange vs. blue) are similar across blind and sighted
people on average, individual blind people’s judgments are more vari-
able (Marmor, 1978; Saysani et al., 2018; Shepard & Cooper, 1992).
Blind individuals rate large animals (e.g., tiger, rhinoceros) as less
familiar, and animal appearance knowledge differs somewhat across
blind and sighted groups (Kim et al., 2019). Blind and sighted people
show low agreement about the colors of animals and common objects,
including plants. For example, in one study, 100% of sighted people and
about 50 % of blind participants labeled carrots as orange (Kim et al.,
2021). Likewise, semantic similarity judgments about fruits and vege-
tables are influenced by color in sighted but not blind participants
(Connolly et al., 2007). In sum, the available behavioral evidence sug-
gests that sighted people and people born blind share ‘visual’ knowl-
edge, but this knowledge is not identical across groups. In particular,
blind and sighted people disagree about some aspects of the appearance
of living things.

Given that differences in behavior across groups are relatively subtle,
one interpretation of these results is that direct sensory access is not as
central to conceptual representation as predicted by the ‘different-body/
different-concepts’ hypothesis (Bedny, 2020; Bedny et al., 2019; Bedny
& Saxe, 2016; Mahon et al., 2009; Mahon & Caramazza, 2011; Van-
nuscorps & Caramazza, 2016). Alternatively, it is possible that subtle
behavioral differences between blind and sighted people reveal more
fundamental changes in the format of their ‘visual’ conceptual repre-
sentations (e.g., Connolly et al., 2007; Yee et al., 2013; Yee, Jones, &
McRae, 2017). Neuroscience evidence can help distinguish between
these interpretations.

2.1. Neural evidence regarding the relationship between concepts and
sensory experience

Neuroscience studies have provided some of the strongest evidence
for the idea that concepts are embodied in sensorimotor systems. Classic
neuropsychological work proposes that semantic deficits for living
things arise as a result of damaged visual knowledge (Allport, 1985;
Warrington & Shallice, 1984; Warrington & McCarthy, 1987; Farah &
McClelland, 1991; Gaffan & Heywood, 1993; Moss et al., 1997; Tranel
et al., 1997; Humphreys & Forde, 2001; cf. Caramazza & Shelton, 1998;
Caramazza&Mahon, 2003). fMRI studies find that thinking about living
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things (e.g., animals) activates distinctive neural structures, and such
findings have been attributed to the retrieval of visual knowledge cen-
tral to living things concepts (Martin et al., 1996; Okada et al., 2000;
Perani et al., 1999; Thompson-Schill et al., 1999).

Analogously, parts of the posterior portion of the left middle tem-
poral gyrus (LMTG+) respond preferentially to action verbs over con-
crete nouns (Bedny et al., 2008, 2014; Bedny & Thompson-Schill, 2006;
Davis et al., 2004; Elli et al., 2019; Kable et al., 2002, 2005; Lapinskaya
et al., 2016; Martin et al., 1995; Yu et al., 2012), which has been
attributed to the importance of visual motion information for action
verb representations (Kable et al., 2002, 2005; Tranel et al., 2003;
Kemmerer et al., 2008; Noppeney, 2008; Pulvermüller & Fadiga, 2010;
Kemmerer & Gonzalez-Castillo, 2010; Damasio & Tranel, 1993). In the
current study, we tested whether these neural signatures of
vision-dependent concepts differ across congenitally blind and sighted
people. The emergence of group differences would provide support for
the idea that the sensory capacities of our bodies shape our conceptual
representations. Alternatively, it is possible that neural signatures pre-
viously attributed to the visual dependence of concepts develop simi-
larly in people born blind. This finding would provide evidence for the
body-independence of concepts.

2.2. The current study: comparing the neural basis of living things and
light events across congenitally blind and sighted people

We compare the neural basis of two visual categories, living things
and light events, across congenitally blind and sighted people. Vision is
thought to provide a key source of information about these categories.
Living things and light events also span a wide range of semantic types,
from concrete entities to events, and thus together offer a broad
perspective on the contribution of vision to the neural basis of concepts.
Finally, as noted above, living things and light events are associated with
distinctive and consistent neural signatures in sighted people: both
categories dissociate neurally from other categories of concepts (i.e.,
activate distinctive regions of the brain and/or produce distinctive
neural patterns of activity as measured by multivariate methods). One
hypothesis is that such dissociations arise because vision plays a privi-
leged role in the acquisition of these concepts (e.g., Warrington &
Shallice, 1984; Tranel et al., 2003; cf. Caramazza, 1998). If so, we would
expect to find some or all of these neural dissociations to be absent,
weakened, or different (e.g., in neural location) in people born blind.
Alternatively, if the same neural signatures are observed in congenitally
blind people, this finding would provide strong support for the idea that
visual experience is not central to their acquisition.

2.2.1. Neural responses to living things concepts in sighted people and
predicted responses in blind people

In sighted people, words referring to living things elicit distinctive
neural responses in temporoparietal semantic brain networks, particu-
larly in the precuneus (PC; Devlin et al., 2002; Fairhall & Caramazza,
2013a, 2013b; Fairhall et al., 2014; Peer et al., 2015; Wang et al., 2016;
Silson et al., 2019; Rabini et al., 2021; Deen& Freiwald, 2022; Aglinskas
& Fairhall, 2023). Responses to living things in the precuneus are eli-
cited by words and images alike (Fairhall & Caramazza, 2013a; Fairhall
et al., 2014). This distinguishes the precuneus from lateral ventral
occipito-temporal cortex (VOTC), which responds to images of living
things but not to words referring to them (Kanwisher et al., 1997; Grill-
Spector et al., 2004; Konkle & Caramazza, 2013; Connolly et al., 2016;
Noppeney et al., 2006; Mahon et al., 2009; see Bi et al., 2016 for a re-
view). Moreover, in sighted people, classifiers trained on patterns of

neural activity in the precuneus generalize across images of living things
and words referring to living things (Fairhall & Caramazza, 2013a),
making these responses a good test case for comparing living things
representations across blind and sighted people.

2.2.2. Neural responses to light event concepts in sighted people and
predicted responses in blind people

The second ‘visual’ category examined in the current study is light
events (e.g., ‘sparkle’). Unlike animal nouns or motion verbs (e.g., ‘clap’,
‘hit’), light events are only directly accessible through vision. Light
events are situated in time and encoded in most languages, including
English, by verbs (Frawley, 1992; Langacker, 1987; Talmy, 1975). Pre-
vious studies have found that event words elicit neural responses in the
LMTG+ relative to words describing objects and properties (e.g., Bedny
& Thompson-Schill, 2006; Davis et al., 2004; Kable et al., 2002, 2005).
Whether the LMTG+ encodes modality-specific or modality-invariant
conceptual representations has been debated. Early studies attributed
responses to motion verbs in the LMTG+ to the retrieval of visual motion
information (e.g., Damasio & Tranel, 1993; Kable et al., 2002, 2005;
Martin et al., 1995). Subsequent work showed that people born blind
also activate this region during motion verb comprehension, suggesting
that it supports modality invariant representations (Bedny et al., 2012;
Bottini et al., 2020; Noppeney et al., 2003). However, an alternative
interpretation is that visual motion information represented in this re-
gion in sighted people is replaced by auditory or sensorimotor motion
information in people born blind (e.g., the visual image of bouncing is
replaced by the sound of bouncing) (Yee et al., 2013; Yee, Jones, &
McRae, 2017; see also Striem-Amit et al., 2018; Bi, 2021; Kiefer,
Kuhnke, & Hartwigsen, 2024; Campbell & Bergelson, 2022). Relative to
motion verbs, light verbs provide a stronger test of the contribution of
visual experience to conceptual representation because they are directly
accessible only through vision. If LMTG+ responses to light events are
observed in congenitally blind people, this would suggest that such
representations develop equivalently regardless of whether they are
learned via direct sensory access.

2.2.3. Current experimental design
We compared ‘visual’ categories to multiple non-visual categories

within the same general semantic class (entities/nouns vs. events/
verbs). Among entity concepts, we compared ‘more visual’ living things
(birds and mammals) to ‘less visual’ non-living things (manmade and
natural places) (e.g., Warrington & McCarthy, 1987; Warrington &
Shallice, 1984). Among event concepts, we compared visual light
emission events (e.g., ‘sparkle’, ‘glow’) to non-visual events, including
sound emission events (e.g., ‘beep’, ‘squeak’), hand actions (e.g., ‘prod’,
‘stroke’), andmouth actions (e.g., ‘slurp’, ‘lick’). Participants heard pairs
of words from the same semantic category (e.g., ’the robin, the owl’, or
‘to sparkle, to glow’) and judged their semantic similarity on a scale of 1
to 4. Pairing words within semantic categories ensured that participants
could make detailed semantic judgments. We used individual-subject
fMRI analysis (Fedorenko et al., 2010; Nieto-Castañón & Fedorenko,
2012) to identify previously established neural networks responsive to
entities/nouns and events/verbs in each participant. Within these net-
works, we compared neural responses to ‘visual’ and non-visual con-
cepts using univariate and multivariate approaches.
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3. Methods

3.1. Participants

Twenty-one congenitally blind adults (13 females, 8 males; age range
18–67 years, M = 39.14 ± 13.81 SD) and twenty-two sighted age- and
education-matched controls (16 females, 6 males; age range: 19–62
years, M = 37.55 ± 13.25 SD) participated in the study (Supplementary
Table 1). Blind participants lost their sight due to pathologies of the eyes
or optic nerve anterior to the optic chiasm (i.e., not due to brain dam-
age), and had at most minimal light perception since birth. Throughout
the experiment, all participants (sighted and blind) wore a light exclu-
sion blindfold to match their visual input. Sighted and blind participants
were screened for cognitive and neurological disabilities (self-report).
Participants gave written informed consent and were compensated $30
per hour. The study was reviewed and approved by the Johns Hopkins
Medicine Institutional Review Boards. Four additional blind participants
were scanned but excluded from the final sample because they were
older than 70 years of age (n = 2), they were not blind since birth (n =

1), or they gave similarity judgments different from those of the group
(n = 1, correlation with the group lower than 2.5 SDs from the average
for both verbs and nouns).

3.2. Stimuli and procedure

While undergoing functional magnetic resonance imaging (fMRI),
participants heard pairs of words and judged how similar the two words
were in meaning on a scale from 1 (not at all similar) to 4 (very similar),
indicating their responses via button press. Word stimuli fell into 1 of 2
grammatical classes (entities/nouns, events/verbs), facilitating our
investigation of ‘visual’ categories spanning both classes (i.e., animal
nouns, light verbs). Within these classes, words were further divided
into 4 categories (entities/nouns: birds, e.g., ‘the crow’; mammals, e.g.,
‘the fox’; manmade places, e.g., ‘the barn’; natural places, e.g., ‘the
swamp’; events/verbs: light emission, e.g., ‘to sparkle’; sound emission,
e.g., ‘to squeak’; hand-related actions, e.g., ‘to pluck’, mouth-related
actions, e.g., ‘to bite’) (Fig. 1, Table 1, see Appendix 1 for full list of
stimuli). These categories captured a wide range of semantic categories
within each grammatical class, including categories for which visual
information is thought to play a comparatively less important role (e.g.,
places, sound emission). Words were matched across several variables,
including number of syllables and familiarity (see Elli et al., 2019 and
Appendix 2 for details). Word pairs were presented in blocks of 4 and
were grouped by semantic category within blocks. Each word appeared
once within a block. Blocks were 16 s long and were separated by 10 s of
rest. The experiment included a total of 144 blocks evenly divided into 8
runs.

Our experimental design enabled us to perform multivariate analysis

(MVPA) of neural responses to each category. Whereas univariate
analysis measures the magnitude of neural activity corresponding to
different experimental conditions, multivariate analysis measures the
distinctiveness of patterns of activity across conditions, offering a more
sensitive approach. Because multivariate analysis can capture more
subtle differences in representational content, it is well suited to address
cognitive questions. In the current study, we use multivariate analysis
(linear classification) to ask whether entity/noun categories and event/
verb categories are differentially represented in blind and sighted par-
ticipants’ brains. To facilitate such analysis, we created two non-
overlapping subsets of words that were exclusively presented in either
even or odd runs. This enabled us to train linear classifiers on neural
responses to one set of words and test the classifiers on neural responses
to a different set of words, ensuring that any above-chance classification
effects reflect differences in the neural patterns associated with semantic
categories and not word forms. Words in each semantic category were
divided into two non-overlapping sets of 9 words. Within each such set,
we created all possible pairs within a category (e.g., ‘the seagull, the
parrot’, 36 pairs per set per category). There were no cross-category
pairs.

3.3. Behavioral data analysis

Due to a response box malfunction, 19/21 blind and 19/22 sighted
participants contributed to behavioral data analysis. In-scanner simi-
larity judgments were first standardized (z-scored to mean = 0 ± 1 SD)
within each participant to account for individual differences in Likert
scale use, and then standardized within grammatical class (i.e., events/
verbs, entities/nouns) to a [0,1] range (i.e., x = x− xmin

xmax − xmin) within each
participant. To assess agreement in semantic judgments within and
across blind and sighted groups, we correlated item-wise ratings within
each semantic category using Spearman’s rho (ρ) rank correlations. This
analysis asks whether blind and sighted participants agree regarding
which pairs within a semantic category are most similar in meaning (see
Appendix 3 for details).

3.4. fMRI data acquisition and preprocessing

MRI structural and functional data of the whole brain were collected
using a 3 Tesla Phillips scanner with a 32-channel head coil. We
collected T1-weighted 3D-MPRAGE structural images using a pulse
sequence in 170 sagittal slices with 1mm isotropic voxels (TE/TR= 7.0/
3.2 ms, FoV = 240 × 240 mm, 288 × 272 acquisition matrix, scan
duration = 5:59′). We collected T2*-functional BOLD images using
parallel transverse ascending echo planar imaging (EPI) sequences in 36
axial slices with 2.5 × 2.5 × 2.5 mm voxels (TE/TR = 30/2000 ms, FoV
= 192x172mm, 76 × 66 acquisition matrix, 0.5 mm gap, flip angle =

70◦, scan duration = 8:04′).

Table 1
Example stimuli from each category.

Entities / Nouns
Animals

Birds the crow – the dove the goose – the owl
Mammals the fox – the lion the giraffe – the hippo

Places
Manmade the barn – the garage the shrine – the temple
Natural the swamp – the bay the canyon – the crater

Events / Verbs
Actions

Hand to prod – to pluck to stroke – to pummel
Mouth to gnaw – to bite to slurp – to lick

Emissions
Light to glow – to sparkle to shine – to flash
Sound to beep – to ring to squeak – to bang
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Data were analyzed using FSL, Freesurfer, the Human Connectome
Project workbench, and custom in-house software written in Python
(Dale et al., 1999; Glasser et al., 2013; Smith et al., 2004). Functional
data were motion corrected using FSL’s MCFLIRT algorithm (Jenkinson
et al., 2002), high pass filtered to remove signal fluctuations at fre-
quencies longer than 128 s/cycle, mapped to the cortical surface using
Freesurfer, spatially smoothed on the cortical surface (6 mm FWHM
Gaussian kernel), and prewhitened to remove temporal autocorrelation.
Covariates of no interest were included to account for confounds related
to white matter, cerebral spinal fluid, and motion spikes.

3.5. fMRI data analysis

3.5.1. Univariate analysis
Univariate analyses were used to test whether regions previously

associated with animal nouns (i.e., the precuneus) and light verbs (i.e.,
the LMTG+) exhibit characteristic category-specific responses in the
absence of visual experience. Each of the entity/noun and event/verb
categories was entered as a separate predictor in a general linear model
(GLM) after convolving with a canonical hemodynamic response func-
tion and its first temporal derivative. Each run was modeled separately,
and runs were combined within-subject using a fixed-effects model (Dale
et al., 1999; Smith et al., 2004). Group-level random-effects analyses
were corrected for multiple comparisons across the whole cortex at p <
0.05 family-wise error rate (FWER) using a nonparametric permutation
test (cluster-forming threshold p < 0.01 uncorrected) (Eklund et al.,
2016; Eklund et al., 2019; Winkler et al., 2014).

3.5.2. ROI definition
We defined regions of interest in each participant to enable

individual-subject analyses of responses to ‘visual’ vs. ‘non-visual’ cat-
egories. Regions of interest were defined in cortical areas (search spaces)
previously shown to respond to entity and event concepts in sighted
people (see Crepaldi et al., 2013, for a review). Within these noun and
verb responsive areas, we compared responses to ‘visual’ concepts across
blind and sighted people. These areas also responded more to nouns vs.
verbs or vice versa in whole-cortex analysis (p< 0.05 uncorrected) in the
current study. We defined 4 entity/noun-preferring search spaces: left
precuneus (LPC), left inferior parietal lobule (LIP), left lateral inferior
temporal cortex (LlatIT), and left medial ventral temporal cortex
(LmedVT); and 1 event/verb-preferring search-space: left middle tem-
poral gyrus/inferior parietal cortex (LMTG+) (Supplementary Fig. 4).
Within these search spaces, we defined individual subjects’ functional
ROIs for each participant.

Although the left inferior frontal gyrus also respondedmore to events
than entities in the current study, we previously found that it showed
weak and category-invariant decoding in sighted adults (Elli et al.,
2019); therefore, we did not use this ROI.

Search spaces were first defined in the blind and sighted groups
separately and then combined across groups, such that each search space
(e.g., blind LPC + sighted LPC) included all the voxels responding more
to events or entities in either group. This procedure is inclusive to avoid
omitting above-threshold activation in either of the groups. Next, we
defined individual-subject ROIs within each search space by selecting
every participant’s top 300 active vertices for the events/verbs>enti-
ties/nouns (verb ROI) or entities/nouns>events/verbs (noun ROIs)
contrasts (see Appendix 4 for details).

Following past work demonstrating occipital activation during lan-
guage processing in blind individuals (Amedi et al., 2003; Bedny et al.,
2011, 2012, 2015; Lane et al., 2015; Röder et al., 2002), we additionally

defined two ROIs in occipital cortex: left and right V1-V2 (BA17–18)
from the PALS-B12 Brodmann area atlas included in FreeSurfer (Van
Essen, 2005).

3.5.3. MVPA ROI analysis
We used MVPA (PyMVPA toolbox; Hanke et al., 2009) to assess the

extent to which patterns of activity in entity- and event-responsive ROIs
distinguish between entity categories and between event categories.

For each ROI in each participant, we trained a linear support vector
machine (SVM) classifier to separately decode among the 4 event cate-
gories and the 4 entity categories (chance 25 %). We submitted to this
analysis the z-scored beta parameter of the GLM associated with each
vertex for each semantic category in each run (2 grammatical classes * 4
categories per class = 8 total observations per vertex per run) (see Ap-
pendix 5 for details). Within each of the entity- and event-responsive
ROIs, we used one-tailed Student’s t-tests to test the classifier’s accu-
racy against chance (25 %), and two-tailed independent samples Stu-
dent’s t-test to compare the accuracy for events and entities. We used
repeated measures ANOVAs to test for interactions between groups,
ROIs, and grammatical class (entities/events). We evaluated signifi-
cance using a combined permutation and bootstrapping approach
(Schreiber & Krekelberg, 2013; Stelzer et al., 2013) (see Appendix 5 for
details). The same approach was used to assess the statistical signifi-
cance of decoding accuracies for entity categories and event categories
within the two occipital ROIs.

Next, to evaluate how well the classifier performed on pairwise
distinctions among entities (e.g., birds vs. mammals) and among events,
we inspected the confusion matrices generated by the classifier. The
confusion matrices contain the classification and misclassification fre-
quencies for any pair of categories, which can be compared using a
signal detection theory framework (Green & Swets, 1966; Haxby et al.,
2014; Swets et al., 1961). We assessed the discriminability between 1)
animals vs. places within entity-responsive ROIs and 2) light events vs.
all other event categories in the LMTG+ by computing the nonpara-
metric estimate of discriminability (Grier, 1971; Pollack & Norman,
1964; Stanislaw & Todorov, 1999). An A′ of 0.5 corresponds to chance
performance, whereas an A′ of 1 indicates perfect discriminability.
Because A′ values did not follow a normal distribution, we used one-
sample Wilcoxon signed rank tests to compare A′ values to chance per-
formance, and a repeated measures permutation ANOVA (5000 per-
mutations) using the permuco package in R (Frossard & Renaud, 2021)
to test for interactions between groups, ROIs, and classification error
type in entity-responsive brain regions. Wilcoxon signed rank tests use
the test statistic V, which represents the sum of the positive ranks, or the
distance of all observed values greater than the chance-level from the
chance-level.

4. Results

4.1. Behavioral results

4.1.1. Between-group agreement
Semantic similarity judgments made by blind and sighted people

were significantly correlated across groups for every semantic category.
Some categories were more similar across groups than others (Fig. 1A):
between-group similarity was highest for mouth events (ρ = 0.93), and
lowest for birds (ρ = 0.6) and mammals (ρ = 0.68). Between-group
similarity was lower for animal nouns (bird, mammal) than for place
nouns (manmade, natural) (animal nouns: ρ = 0.7, 95 % CI = [0.61,
0.78]; place nouns: ρ = 0.86, 95 % CI = [0.81, 0.9]). Light events, the
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only purely visual category, showed similar agreement across groups
compared to other event/verb types (light events: ρ = 0.85, 95 % CI =
[0.77, 0.9], mouth, hand, and sound events: ρ = 0.88, 95 % CI = [0.85,
0.91]).

4.1.2. Within-group agreement
Blind and sighted participants showed significant within-group

agreement for all categories (blind: nouns ρ = 0.23 ± 0.24 SD, verbs
ρ = 0.33 ± 0.28 SD; sighted: nouns ρ = 0.42 ± 0.26 SD, verbs ρ = 0.5 ±

0.24 SD). Overall, there was lower agreement among blind participants
than among sighted participants for both entities/nouns and events/
verbs (entities/nouns: main effect of group, F(1,37) = 8.99, p = 0.005;
events/verbs: main effect of group, F(1,37) = 5.65, p = 0.02). An ANOVA
comparing within-group agreement across entity/noun categories

Fig. 1. In-scanner semantic similarity judgments across sighted and blind participants. (A) Item-wise correlations (Spearman’s rho ρ) between blind and sighted
average group ratings. Confidence intervals (95 %) are indicated via shading. (B) Leave-one-out within-group correlations (Spearman’s ρ). Error bars: ± standard
error of the mean.
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revealed a marginal group by semantic category interaction (group x
entity semantic category interaction, F(3,111) = 2.24, p = 0.09; Fig. 1B).
Post-hoc Tukey-adjusted pairwise comparisons revealed a significant
difference between groups only for mammals (Fig. 1B, blind ρ = 0.22 ±

0.24; sighted ρ = 0.49 ± 0.24). No group by semantic category inter-
action was observed in within-group agreement for events/verbs
(F(3,111) = 1.46, p = 0.23).

4.1.3. Average similarity ratings
People born blind rated entities/nouns as more similar to each other

(Supplementary Fig. 1 A; repeated measures ANOVA, 2 groups (sighted,
blind) x 4 noun semantic categories (birds, mammals, manmade pl.,
natural pl.): main effect of group, F(1,37) = 7.47, p = 0.01). This effect
was qualified by a marginal group by semantic category interaction,
F(3,111) = 2.57, p = 0.06), whereby the group difference was more
pronounced for birds and mammals (Supplementary Fig. 1 A).

For events/verbs, there were no significant group or group by con-
dition interaction effects in average similarity ratings (all ps > 0.1;
Supplementary Fig. 1 A; see Appendix 6 for details).

4.1.4. Reaction times
There were no group or group by condition interaction effects in

reaction time among entities/nouns or events/verbs (all ps > 0.5; Sup-
plementary Fig. 1B; see Appendix 6 for details). Across both groups,
participants were faster to make judgments about animals (birds,
mammals) compared to places (manmade, natural; repeated measures
ANOVA, 2 groups (sighted, blind) x 4 entity/noun categories (birds,
mammals, manmade places, natural places): main effect of semantic
category, F(3,111) = 7.79, p < 0.0001). Participants across groups were
also faster to make judgments about mouth actions compared to all other
event/verb categories (repeated measures ANOVA, 2 groups (sighted,
blind) x 4 noun categories (hand, mouth, light, sound): main effect of
semantic category, F(3,111) = 7.36, p = 0.0002).

In sum, subtle differences in behavioral judgments were observed
across groups for living things (i.e., animal nouns), a partially vision-
dependent category, but not for light events, an entirely vision-
dependent category. These findings suggest that visually acquired
knowledge is used by sighted people to judge similarity between some

‘visual’ categories, i.e., animals. However, direct sensory access is not
necessary for acquiring typical meanings of sensory categories, i.e., light
events.

4.2. fMRI results

4.2.1. Do selective univariate responses to living things concepts emerge in
the absence of visual experience?

We observed similar neural signatures of living things concepts
across groups. In both sighted and blind participants, animal nouns
(birds and mammals) activated a sub-region of the PC more than place
nouns (Fig. 2, animals > places). The animal response observed in the
blind group was in an analogous location to previously reported re-
sponses to living things (i.e., people) in the PC of sighted participants
(e.g., Fairhall & Caramazza, 2013b). This result suggests that the
emergence of a preferential response to living things concepts in the PC
does not require vision.

Consistent with prior findings, preferential responses to place nouns
over animal nouns were also observed in sighted participants on the
medial surface, in the retrosplenial complex, inferior to the responses to
animal nouns. A similar response to place nouns was observed at a more
lenient statistical threshold in the blind group (p < 0.01, uncorrected).
This retrosplenial complex region has previously been identified as part
of the ‘place’ processing network in sighted participants (Dilks et al.,
2022; Epstein, 2008; Ino et al., 2002; Rauchs et al., 2008). In both
groups, preferential responses to places were also observed in medial
VOTC, near but anterior to the canonical location of the para-
hippocampal place area (PPA) (Weiner et al., 2018), although this
response was weaker and more distributed in the blind group, extending
into early visual cortex (group by condition interaction, Fig. 5B).

Both groups also exhibited preferential univariate responses to

Fig. 2. Whole-cortex results for animals>places: (A) Sighted; (B) Blind. Group
maps are shown p < 0.01 with FWER cluster-correction for multiple compari-
sons. Voxels are color coded on a scale from p = 0.01 to p = 0.00001. The
average PPA location from separate cohort of sighted subjects (Weiner et al.,
2018) is overlaid on the place noun response observed in the current study. The
two overlap in both groups, with the focus of the place noun response located
more anteriorly. The average people-preferring precuneus location from a
separate cohort of sighted subjects (Fairhall & Caramazza, 2013b) is overlaid on
the animals response observed in the current study. These also overlap in both
blind and sighted participants. Increased activation for animals over places is
observed in the left precuneus in sighted participants at a lower statistical
threshold (p < 0.05 uncorrected). See Supplementary Fig. 3 for full whole-
cortex results.

Fig. 3. Whole-cortex results for events/verbs > entities/nouns on the left
lateral surface: (A) Sighted; (B) Blind. Group maps are shown at p < 0.01 with
FWER cluster-correction for multiple comparisons. Voxels are color coded on a
scale from p = 0.01 to p = 0.00001. (C) Peak percent signal change (PSC) from
the 5 % most active vertices for events/verbs>entities/nouns in the LMTG+
(left: sighted; right: blind). Note that this figure can be used to evaluate dif-
ferences among events and among entities in the LMTG+ ROI, as well as dif-
ferences between groups in entity/event responses. This figure cannot be used
to evaluate within-group differences between events and entities because the
ROIs were defined as the most event-selective vertices; thus, the difference
between events and entities may be exaggerated due to statistical bias. See
Supplementary Fig. 2 for full whole-cortex results.
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entities/nouns over events/verbs in parietal and temporal regions pre-
viously associated with concrete entities, including the posterior parie-
tal, lateral inferior temporal, and medial occipitotemporal cortices, as
well as the PC (Supplementary Fig. 2).

In sum, selective responses to living things were observed in tem-
poroparietal networks of congenitally blind and sighted participants
alike, particularly in the precuneus. Neural specialization for ‘living
things’ concepts, a putatively visual category, develops with and
without vision.

4.2.2. Multivariate decoding of animals vs. places throughout entity-
responsive network in blind and sighted groups

MVPA revealed that animals were robustly discriminable from places
throughout entity-responsive regions in both sighted and blind partici-
pants (all ps < 0.05), including in PC (sighted: V = 210, p = 0.0004,
blind: V = 173, p = 0.007; see Supplementary Fig. 5 and Supplementary
Table 3 for results in each ROI), although the sighted group exhibited
higher discriminability overall (repeated measures ANOVA, 2 groups
(sighted, blind) x 4 ROIs (LPC, LIP, LlatIT, LmedVT): main effect of

group, F(1,41) = 37.30, permuted p = 0.0002; main effect of ROI, F(3,164)
= 1.55, permuted p = 0.2).

Inspection of the confusion matrices showed that in both groups,
neural patterns for birds were more likely to be confused with mammals
than places (repeated measures ANOVA, 2 groups (sighted, blind) x 2
error types (bird-mammal, bird-place) x 4 ROIs (LPC, LIP, LlatIT,
LmedVT): main effect of error type F(1,82) = 32.04, permuted p =

0.0002). This effect was qualitatively similar but smaller in the blind
group (error type x group interaction F(3,246) = 10.60, permuted p =

0.003). Similarly, mammals were more likely to be confused with birds
than with places (repeated measures ANOVA, 2 groups (sighted, blind) x
2 error types (bird-mammal, bird-place) x 4 ROIs (LPC, LIP, LlatIT,
LmedVT): main effect of classifier error type F(1,82) = 28.25, permuted p
= 0.0002), and this effect was qualitatively similar across groups but
smaller in the blind group (error type x group interaction F(3,246) =
23.92, permuted p = 0.0002). These results suggest that all of the neural
features of the dissociation between animals and places in tempor-
oparietal semantic networks develop without visual access.

Together, the univariate and the multivariate evidence suggests that
neural representations of living things concepts, a partially ‘vision-
dependent’ category, develop qualitatively similarly regardless of visual
experience.

4.2.3. Responses to visual light events in LMTG+ across blind and sighted
people

There were no differences across blind and sighted groups in the
LMTG+’s response to light events or any other event category in uni-
variate analysis (Fig. 3; individual-subject ROI analysis, repeated mea-
sures ANOVA, 2 groups (sighted, blind) x 4 event categories (hand,
mouth, light, sound): group x event category interaction, F(3,123)= 1.14,
p = 0.34; main effect of group, F(1,41) = 0.06, p = 0.81; main effect of
semantic category, F(3,123) = 7.16, p = 0.0002). In other words, the
LMTG+ of both groups showed a robust response to light events that was
higher than the response to entities/nouns. Multivariate analysis
revealed that spatial patterns of neural activity in LMTG+ distinguish
between different types of events (i.e., light, sound, hand, and mouth)
and this is equally true for blind (t(20)= 3.91, permuted p = 0.0004) and
sighted (t(21) = 3.88, permuted p = 0.0003) participants. There were no
differences in decoding accuracy for event categories in the LMTG+
between the groups (repeated measures ANOVA, 2 groups (sighted,
blind): main effect of group, F(1,41)= 0.94, p= 0.34; Supplementary Fig.
4). Neural populations in the LMTG+ are therefore sensitive to semantic
distinctions between event categories in both sighted and blind people.

We next looked at light events in greater detail because of their visual
nature. Light events were distinguishable from hand events in both
groups (blind: V= 158, p= 0.0009, sighted: V= 170, p= 0.0001). In the
blind group, light events were also distinguishable from both sound
emission events (V = 92, p = 0.007) and mouth actions (V = 127, p =

0.009). In the sighted group, light events were not distinguishable from
sound emission events (V = 86, p = 0.65) and were marginally distin-
guishable from mouth actions (V = 113, p = 0.046). We constructed
confusion matrices based on classifier error patterns to probe the
‘representational space’ of the LMTG+ across groups. Confusion
matrices provide a measure of which event categories have the most
similar representations. Consistent with the idea that the LMTG+ of
blind and sighted people shares a similar representational space, the
confusion matrices for the blind and sighted groups were significantly
correlated (Fig. 4B; r(14) = 0.55, p = 0.03).

In the blind group, the LMTG+ was the only region that showed
higher decoding for verbs than nouns (t(20) = − 2.68, permuted p =

0.01), providing evidence for LMTG+ selectivity for events in this
population. In the sighted group, decoding for verbs and nouns was not
different in the LMTG+ (t(21) = − 0.28, permuted p = 0.78), whereas it
was higher for nouns in LPC and LmedVT (Supplementary Fig. 4; Sup-
plementary Table 4). A 3-way repeated measures ANOVA (2 groups
(sighted, blind) x 5 ROIs (LMTG+, LPC, LIP, LlatIT, LmedVT) x 2

Fig. 4. Classifier responses and confusion matrices for entity categories in the
LPC (A) and for event categories in the LMTG+ (B). Bar graphs display the
correct responses and errors for classification of animals vs. places (LPC) and
light vs. all other event categories (LMTG+) within each participant group.
Note that in the two lightest bars reflect the number of errors made in both
directions (e.g., “light-sound” = mean of light (real) – sound (predicted) and
sound (real) – light (predicted)). Chance: 25 %. Confusion matrices (columns =
real, rows = predicted) display the percentage of correct responses (diagonals)
and errors (off diagonals) for classification of the relevant categories in each
ROI. See Supplementary Fig. 5 for results from all ROIs. Key: Mml = mammal,
ManP = manmade place, NatP = natural place.
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grammatical classes (entities/nouns, events/verbs)) revealed an ROI x
grammatical class interaction but no 3-way interaction with group (two-
way ROI x grammatical class interaction, F(4,164) = 6.40, permuted p <
0.0001; 3-way interaction F(4,164) = 1.31, permuted p = 0.26). This
result suggests that entity/noun and event/verb selectivity develop
similarly across the cortex regardless of visual experience.

In sum, we find that neural signatures of light events are similar
across congenitally blind and sighted people. In both sighted and blind
participants, the LMTG+ responds more to events than entities and
distinguishes among different semantic categories of events, including
light events and other event types. Thus, the neural basis of a conceptual
category that is only directly accessible through vision, i.e., light events,
develops similarly in people with and without direct sensory access.
These results suggest that vision is not necessary for the emergence of
category-specific neural responses to ‘visual’ events.

4.2.4. Responses to words in occipital networks of blind and sighted people
Prior studies have identified responses to sentences and words in the

occipital cortices of congenitally blind people as well as some sensitivity
to properties of spoken words in the occipital cortices of sighted people
(e.g., Sadato et al., 1996, 1998; Burton, Diamond, & McDermott, 2003;
Burton et al., 2002; Röder et al., 2002; Amedi et al., 2003; Bedny et al.,
2011; Lane et al., 2015; Seydell-Greenwald et al., 2023). These results
have been described as evidence for ‘cross-modal plasticity,’ i.e., the
recruitment of visual networks for non-visual tasks. Consistent with this
prior work, in the current study, group differences emerged exclusively
within occipital cortices.

First, and consistent with prior work, sighted participants showed
either deactivation or activity that was not different from rest for all
word categories in early occipital cortices (e.g., Bottini et al., 2020).
Numerous previous studies find deactivation in visual cortices of sighted
people during attentive cross-modal auditory and tactile tasks, a
response pattern thought to be related to the suppression of irrelevant
information from the visual modality (e.g., Hairston et al., 2008;
Kawashima et al., 1995; Laurienti et al., 2002; Murphy et al., 2016). A
similar phenomenon is likely to account for the suppression of activity in
the visual cortex of sighted people listening to words in the current
study. By contrast, the congenitally blind group showed above-rest re-
sponses to entity and event words in several early occipital areas,
consistent with prior evidence that visual cortices participate in spoken

language tasks in this population (Fig. 5).
Second, blind and sighted groups showed different preferences

across semantic categories in occipital cortex, in line with the idea that
the functions supported by visual areas are different across blind and
sighted populations. Importantly, however, group differences did not
pattern with the ‘visual’ status of the categories. As discussed above, an
anterior PPA-like medial VOTC region showed a preference for places in
sighted and blind people, but a larger effect was observed in the sighted
group. Place-preferring activity in blind participants was more diffuse,
expanding into posterior early occipital networks. In blind participants,
a left-lateralized network of early visual areas exhibited increased re-
sponses to places over animals, with above-baseline responses observed
for both categories (Fig. 5B). We suggest that this finding reflects the
posterior expansion of semantic place responses into early occipital
networks in blind people. By contrast, the same early visual areas of
sighted participants exhibited deactivation for both animals and places.

We failed to find any evidence for enhanced responses to light events
or living things (i.e., animals) in early visual cortex of sighted people
compared to blind people (Supplementary Fig. 6). Although concrete
nouns are generally more imageable than verbs (see Appendix 2 for
imageability ratings of stimuli used in the current study), sighted par-
ticipants exhibited greater deactivation for nouns compared to verbs in a
network of right-lateralized early visual areas (medial, ventral, and
dorsal surfaces of the occipital pole; Fig. 5, see also Fig. 2). By contrast,
blind participants exhibited equivalent above-baseline activity for both
nouns and verbs in these regions (Fig. 5A). Differential responses of
early visual cortices to spoken words across blind and sighted people is
consistent with prior evidence for neural plasticity in this population
(e.g., Röder et al., 2002; Bedny et al., 2011; Collignon et al., 2013; see
Pascual-Leone et al., 2005; Merabet & Pascual-Leone, 2010; Bedny,
2017 for reviews).

Multivariate decoding among semantic categories in early visual
networks was weak in blind and sighted people alike (Supplementary
Fig. 6). In early visual regions defined using a Brodmann area atlas (V1-
V2; BA17–18), we observed above-chance decoding exclusively in the
right hemisphere of blind participants (decoding of entity categories:
t(20) = 2.51, permuted p = 0.009; event categories: t(20) = 2.33,
permuted p = 0.01). Thus, despite the fact that early visual cortices
showed above-rest univariate responses to events and entities in blind
people, these regions do not robustly encode finer-grained distinctions
among semantic categories. We foundmarginal decoding among entities
in the left hemisphere of sighted participants (V1-V2; BA17–18 entity
categories: t(21) = 1.56, permuted p = 0.07; event categories: t(20) =
0.45, permuted p = 0.34).

In sum, responses in early visual networks of blind and sighted
people were not related to the ‘visual’ status of the stimuli. We failed to
find any evidence that ‘visual’ words (animal nouns or light events)
activate visual cortices in sighted but not blind people. Reponses of early
visual networks to spoken words were therefore not predicted by
whether or not an individual had accessed the referent of the words
through vision.

5. Discussion

5.1. Semantic similarity judgments for ‘visual’ words across groups

Consistent with prior evidence that people born blind have rich ‘vi-
sual’ semantic knowledge, similarity judgments were positively corre-
lated across groups for all semantic categories, including ‘visual’ ones
(i.e., living things and light events, e.g., Marmor, 1978; Landau &
Gleitman, 1985; Shepard & Cooper, 1992; Lenci et al., 2013; Saysani
et al., 2018). In line with the claim that vision plays an important role in
learning about living things, semantic similarity judgments of blind and
sighted people differed more for birds and mammals than for places
(e.g., ‘barn’, ‘garage’) (i.e., slightly lower correlations between groups
and higher similarity judgments on average for birds and mammals

Fig. 5. Group-by-condition interactions of univariate responses in occipital
cortices. Group maps are shown p < 0.01 with FWER cluster-correction for
multiple comparisons. Voxels are color coded on a scale from p = 0.01 to p =

0.00001. (A) Peak percent signal change averaged across all occipital regions in
which group-by-grammatical class (events vs. entities) interactions were
observed. (B) Peak percent signal change in occipital regions in which group-
by-entity category (animals vs. places) interactions were observed (occipital
pole, anterior medial VOTC).
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among blind people) (Allport, 1985; Warrington & Shallice, 1984;
Warrington & McCarthy, 1987; Farah & McClelland, 1991; Gaffan &
Heywood, 1993; Moss et al., 1997; Tranel et al., 1997; Humphreys &
Forde, 2001; see Bi et al., 2016, for related arguments). One prior study
also found that animal appearance knowledge differs partially across
sighted and blind people (Kim et al., 2019). In particular, blind and
sighted people’s judgments about animal shape, size, and texture is
overlapping but not identical, and labels of animal colors differ across
groups (Kim et al., 2019). Together with this prior evidence, the results
of the current study suggest that for sighted people, visually derived
information about the surface features of animals influences semantic
similarity judgments (see Connolly et al., 2007; Kim et al., 2021 for
related evidence with regard to fruits and vegetables).

In contrast to living things, which can in principle be accessed
through non-visual modalities (e.g., touch, audition), light events (e.g.,
‘sparkle’) are directly accessible only through vision. We might there-
fore expect judgments about light verbs to differ even more across blind
and sighted people. Contrary to this prediction, we found that semantic
similarity judgments for light events were just as correlated across blind
and sighted groups as judgments about non-visual events/verbs. This
result corroborates prior behavioral studies that report similar judg-
ments for light event concepts across blind and sighted people (Lenci
et al., 2013; Bedny et al., 2019). In sum, these results suggest that shared
sensory experience of a concept’s referent does not predict shared se-
mantic knowledge as measured by semantic similarity judgments. If this
were the case, we would expect to observe larger differences between
groups in semantic similarity judgments about light events compared to
judgments about living things.

One factor that could influence the degree to which shared sensory
experience influences semantic similarity judgments is the availability
of other shared non-visual information that could be used to make the
same judgments. Prior evidence suggests that the degree to which se-
mantic judgments of animals are influenced by appearance knowledge
varies among sighted people as a function of ecological expertise. While
sighted adults living in industrialized societies rely on surface-level vi-
sual appearance when judging the semantic similarity of living things
(animals and plants), people with more biological expertise (e.g.,
members of cultural groups that live in closer contact with nature) tend
to rely more on abstract causal information such as behavioral and
ecological patterns (Bailenson et al., 2002; Boster & Johnson, 1989;
López et al., 1997; Medin & Atran, 2004; Murphy & Medin, 1985;
Proffitt et al., 2000). The participants in the current study were mostly
recruited from the urban environment of Baltimore, although we did not
measure their ecological expertise. Subtle differences in semantic simi-
larity judgments about birds and mammals across blind and sighted
urbanites could partly reflect the fact that the average sighted U.S. city-
dweller knows little else about what distinguishes a sparrow from a finch
besides what they look like. Future work comparing blind and sighted
people with different levels of animal expertise could resolve this
question. Another factor that may influence the coherence of similarity
judgments across blind and sighted groups is the degree to which the
‘sensory’ information in question can be readily learned through other
sources, such as language. Semantic distinctions among light verbs are
arguably low dimensional: light emission verbs fall along dimensions of
intensity and periodicity (Faber & Usón, 1999), whereas differences
between the shapes, colors, and sizes of birds are complex and seemingly
arbitrary, potentially making these features harder to acquire efficiently
through linguistic communication.

In sum, subtle group differences in behavioral judgments were
observed for living things, and there was high agreement across groups
for light events. These results suggest that people can develop shared
representations of purely visual concepts, such as light events, with and
without direct sensory access to their referents.

5.2. Similar neural responses to living things and light events across blind
and sighted people

Behavioral evidence from the current study and prior work is open to
multiple interpretations. The observed difference in behavioral judg-
ments between blind and sighted people for birds andmammals suggests
that sighted participants use visually acquired appearance knowledge to
make semantic similarity judgments about these categories. Do such
behavioral differences between blind and sighted people reflect funda-
mental differences in conceptual representation? Or do they reflect
small quantitative differences in knowledge analogous to those typically
observed across subsamples of the sighted population (e.g., urbanites vs.
naturalists) (e.g., Carey, 2011; Marti et al., 2023; Yee & Thompson-
Schill, 2016)? In a similar manner, the absence of group differences in
light event judgments could reflect the use of qualitatively similar
conceptual representations across groups, or mask profound differences
in representation (e.g., sighted people use visual representations and
congenitally blind people use linguistic ones to arrive at similar judg-
ments). Neural evidence offers complementary insights by testing
whether previously identified neural signatures of ‘visual’ concepts
emerge in the absence of visual experience. The current neural findings
support the view that ‘visual’ concepts develop in qualitatively similar
ways across sighted and blind adults.

5.2.1. Specialization for living things in temporoparietal semantic network
of people born blind

We find that both sighted and blind people exhibit robust neural
specialization for living things in temporoparietal networks. Multivar-
iate analysis revealed distinct neural patterns for living things (i.e.,
animals) and non-living things (i.e., places) across temporoparietal re-
gions previously associated with the retrieval of entity concepts (e.g.,
Deen & Freiwald, 2022; Elli et al., 2019; Fairhall et al., 2014). In addi-
tion, selective responses to living things emerged in the PC of both blind
and sighted participants. These results are consistent with prior findings
from sighted adults proposing that the PC supports living things con-
cepts (Deen & Freiwald, 2022; Devlin et al., 2002; Elli et al., 2019;
Fairhall et al., 2014; Fairhall & Caramazza, 2013a, 2013b; Peer et al.,
2015). Our findings suggest that neural specialization for living things
concepts develops independent of vision. In other words, whether peo-
ple have direct sensory access to a concept’s referent does not appear to
influence the neural basis of its representation.

Consistent with prior literature, we also observed selective responses
to place words in the retrosplenial complex and the medial VOTC of both
blind and sighted people. Medial VOTC responses were located anterior
to the typical location of the perceptual PPA in sighted people (e.g., He
et al., 2013; Wang et al., 2016; Fairhall et al., 2014; Steel et al., 2021;
Häusler et al., 2022; Epstein & Kanwisher, 1998; Weiner et al., 2018;
Silson et al., 2016, Silson et al., 2019; see also Baldassano et al., 2013).
Previous studies have suggested that unlike the posterior PPA, which is
involved in place perception, anterior PPA represents mnemonic and/or
conceptual information related to places (Silson et al., 2016, Silson et al.,
2019; Steel et al., 2021; Häusler et al., 2022). Together, these results
point to a vision-independent ‘double dissociation’ in the neural
instantiation of living things and place concepts.

In sum, neural signatures of ‘living things’, a partially vision-
dependent category for sighted people, develop similarly in people
with and without visual experience, suggesting that these networks are
robust to differences in sensory experience. This neural evidence
therefore points to the ‘body independence’ of living things concepts.

5.2.2. Similar neural signatures of light event concepts in people born blind
and sighted

Unlike animals, light events (e.g., ‘sparkle’, ‘glow’) can be perceived
only through vision. Despite this, we observed similar neural responses
to light emission events among sighted and congenitally blind adults. In
both populations, the LMTG+ exhibits distinctive neural responses to
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light events relative to entities (univariate analysis) as well as to other
event categories (e.g., hand actions; multivariate analysis).

The current results expand on prior work by showing that repre-
sentations of motion verbs (e.g., ‘roll’, ‘bounce’) in the LMTG+ are
similar across congenitally blind and sighted people (Bedny et al., 2012;
Noppeney et al., 2003). One interpretation of these prior findings is that
the LMTG+ of people who are sighted represents visual motion infor-
mation, while the LMTG+ of people born blind undergoes ‘cross-modal
plasticity’: visual information is replaced with sensory information from
other modalities (e.g., audition, touch) (Yee et al., 2013; Yee et al., 2017;
see also Pascual-Leone & Hamilton, 2001; Bavelier & Neville, 2002).
This explanation cannot account for the current findings on light events,
which can only be accessed through the visual modality. It is not clear
what aspects of auditory/tactile experience could inform the blind
learner that, for example, shining is more similar to glowing than to
sparkling or flashing.

We speculate that people born blind use linguistic evidence to ac-
quire the same light event concepts that sighted people acquire (see also
Landau & Gleitman, 1985). Large language models (LLMs) trained on
linguistic data alone can generate human-like semantic judgments about
sensory phenomena (Abdou et al., 2021; Gurnee & Tegmark, 2024; Li
et al., 2021; Marjieh et al., 2022, 2024; Patel & Pavlick, 2022; Sharma
et al., 2024; Wei et al., 2022). Sensory semantic content can therefore in
principle be learned from language alone, i.e., without access to sensory
information from any modality. Precisely how people born blind learn
‘visual’ concepts from language remains to be understood.

It is possible that the LMTG+ of blind and sighted people represents
different types of information, i.e., language-derived information in
blind people and visual motion information in sighted people. This
possibility cannot be ruled out by the available neural data but also lacks
any positive empirical support. Across several studies and a variety of
semantic categories, the LMTG+ of sighted and blind people exhibits
similar neural responses to event concepts. By contrast, both the current
and prior studies find functional differences across early visual networks
of blind and sighted groups (e.g., responses to spoken language and
braille in V1) (e.g., Abboud & Cohen, 2019; Amedi et al., 2004; Col-
lignon et al., 2011, 2013; Röder et al., 2002; Sadato et al., 1996, 1998;
Striem-Amit et al., 2015). In our view, the most parsimonious account of
this evidence is that conceptual representations in the LMTG+ develop
in qualitatively similar ways in people with and without direct visual
access.

It is also worth mentioning that the LMTG+ responds not only to
perceptible events (e.g., ‘to sparkle’, ‘to run’), but also abstract events
(e.g., ‘to think’, ‘to love’), as well as event nouns (e.g., ‘the hurricane’)
(Bedny et al., 2008; Bedny et al., 2012; Bedny et al., 2014; Davis et al.,
2004; Noppeney et al., 2003). This, together with the evidence that
patterns of neural activity in the LMTG+ distinguish among different
event types (Elli et al., 2019), suggests that the LMTG+ encodes
modality-independent semantic representations of event concepts.

In sum, across a broad range of semantic types, from living things to
light events, neural signatures of concepts develop similarly in in-
dividuals with and without direct sensory access. This evidence provides
support for the hypothesis that concepts are ‘body-independent.’

5.2.3. The relationship of the current findings to prior neuroscience
evidence for embodied concepts

Neural data have played a significant role in motivating the view that
concepts are grounded in sensory experience and have contributed to
the ‘different-body/different-concepts hypothesis’ (e.g., Barsalou, 2010;
Gallese & Lakoff, 2005; Kiefer & Pulvermüller, 2012; Meteyard et al.,
2012; Pulvermüller, 2001; Reilly et al., 2024; Yee & Thompson-Schill,
2016; Zwaan, 2014). How do we reconcile the current evidence with
prior studies that report activation of sensory systems during semantic
tasks? We speculate that some of the neural activity observed during
conceptual tasks that was interpreted as sensory in prior work is not in
fact sensory. This appears to be the case for responses to action verbs

observed in the LMTG+, which were originally interpreted as reflecting
the activation of visual motion representations. In sighted people, the
LMTG+ is located near visual motion perception regions, including area
MT+ and biological motion perception areas in the superior temporal
sulcus (STS) (Grossman et al., 2000; Isik et al., 2017; Wurm & Car-
amazza, 2019). The original studies proposing that the LMTG+ repre-
sents visual motion information were conducted prior to the advent of
modern functional localization techniques and used group analyses
prone to the error of ‘blending’ regions that are proximal but function-
ally distinct in individual participants (Fedorenko et al., 2010; Nieto-
Castañón & Fedorenko, 2012). It is therefore possible that neighboring
visual and conceptual responses were not separated in this prior work.
More recent evidence suggests that modality-specific sensory responses
to visual motion are separable from responses to words referring to vi-
sual motion (e.g., to run), although there are also shared action repre-
sentations across language and vision (Bedny et al., 2008; Wurm &
Caramazza, 2019).

There is also evidence that under some task conditions, language
referring to perceptible qualities (e.g., color) or objects can activate
high-level sensory representations (e.g., Hsu et al., 2011; Wang et al.,
2020). For example, when asked to make highly detailed perceptual
judgments about the colors of named objects (is a school bus more
similar in color to an egg yolk or to butter?), sighted people activate
high-level color perception regions (Hsu et al., 2011). Whether such
neural responses should be considered ‘part of a concept’ has been hotly
debated (Leshinskaya & Caramazza, 2016; Machery, 2010; Mahon &
Hickok, 2016; Yee & Thompson-Schill, 2016).

A ‘dual theory’ of concepts accommodates both the observation that
sensory regions can be activated during conceptual tasks and the
observation that blind and sighted people exhibit similar neural re-
sponses to ‘visual’ categories (Osherson & Smith, 1981; Margolis &
Laurence, 2003; see also Bi, 2021). According to this view, people with
direct sensory access to perceptible categories have a two-part concep-
tual representation that includes ‘abstract conceptual cores’ as well as
‘sensory identification procedures’ used to identify referents of that
category (Margolis & Laurence, 2003; Osherson & Smith, 1981). The
conceptual cores are activated obligatorily and shared across people
regardless of sensory experience. By contrast, the sensory identification
procedures are retrieved optionally depending on the task and context,
are only retrieved for some perceptible categories, and vary across
people based on their sensory experiences (Yee & Thompson-Schill,
2016). Some recent evidence comparing the neural basis of color
knowledge across blind and sighted people is potentially consistent with
this view. Blind and sighted people activate similar semantic networks
when judging object color, but sighted people additionally activate oc-
cipital visual-perceptual regions (Bottini et al., 2020; Wang et al., 2020).
One interpretation of this result is that the regions activated by both
sighted and blind people represent abstract conceptual cores, whereas
the visual-perception regions activated only by sighted people support
perceptual identification procedures.

The conceptual cores vs. identification procedures hypothesis still
leaves open the question of why visual-perceptual regions (i.e., occipital
cortices) are recruited by sighted people for some visual concepts (e.g.,
object colors) but not others (i.e., living things and light events). Like-
wise, it is unclear why neural responses to living things and light events
are indistinguishable across sighted and blind people making detailed
semantic judgments, while subtle group differences are observed in
object color labeling tasks (Bottini et al., 2020; Wang et al., 2020).

One speculative possibility is that sighted people are more likely to
store and retrieve long-term perceptual representations of object colors
than light events. More generally, ‘visual’ identification procedures
might be less relevant for semantic categories that can be identified
without retrieving information from long-term memory. Unlike repre-
sentations of object appearance, light events are low-dimensional
(flashing = bright light changing periodically), dynamic (i.e., unfold-
ing over time), and variable across instances (flashing streetlights vs.
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flashing lightning). For instance, when told to ‘drive until you see the
flashing light’, a sighted person might identify the flashing event
without the need to store or retrieve a long-term sensory memory of
flashing.

Regardless of which of these explanations, if any, is correct, the
available data suggest that some purely visual concepts (e.g., light
events) are behaviorally and neural indistinguishable in individuals
with and without direct sensory access. Moreover, differences in sensory
experience and resulting differences in appearance knowledge (i.e.,
about living things) do not necessitate changes in the neural basis of
semantic representations. Even in the face of dramatic sensory differ-
ences, people acquire shared sensory concepts with similar neural bases.
Such evidence is difficult to reconcile with the ‘different-body/different-
concepts hypothesis.’ Social and inferential learning via linguistic evi-
dence establishes shared conceptual representations across people.
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Fedorenko, E., Hsieh, P.-J., Nieto-Castañón, A., Whitfield-Gabrieli, S., & Kanwisher, N.
(2010). New method for fMRI investigations of language: Defining ROIs functionally

in individual subjects. Journal of Neurophysiology, 104(2), 1177–1194. https://doi.
org/10.1152/jn.00032.2010

Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., …
Seidenberg, M. S. (2016). Concept representation reflects multimodal abstraction: A
framework for embodied semantics. Cerebral Cortex, 26(5), 2018–2034. https://doi.
org/10.1093/cercor/bhv020

Frank, M. C. (2023). Baby steps in evaluating the capacities of large language models.
Nature Reviews Psychology, 2(8), 451–452. https://doi.org/10.1038/s44159-023-
00211-x

Frawley, W. (1992). Linguistic Semantics. Hillsdale, NJ. Erlbaum.
Frossard, J., & Renaud, O. (2021). Permutation tests for regression, ANOVA, and

comparison of signals: The permuco package. Journal of Statistical Software, 99, 1–32.
https://doi.org/10.18637/jss.v099.i15

Gaffan, D., & Heywood, C. A. (1993). A spurious category-specific visual agnosia for
living things in Normal human and nonhuman Primates. Journal of Cognitive
Neuroscience, 5(1), 118–128. https://doi.org/10.1162/jocn.1993.5.1.118

Gallese, V., & Lakoff, G. (2005). The Brain’s concepts: The role of the sensory-motor
system in conceptual knowledge. Cognitive Neuropsychology, 22(3–4), 455–479.
https://doi.org/10.1080/02643290442000310

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,
Andersson, J. L., … Jenkinson, M. (2013). The minimal preprocessing pipelines for
the human connectome project. NeuroImage, 80, 105–124. https://doi.org/10.1016/
j.neuroimage.2013.04.127

Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic
Bulletin & Review, 9(3), 558–565.

Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and Psychophysics (Vol. 1, pp.
1969–2012). New York: Wiley.

Grier, J. B. (1971). Nonparametric indexes for sensitivity and bias: Computing formulas.
Psychological Bulletin, 75(6), 424–429. https://doi.org/10.1037/h0031246

Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves
face perception, not generic within-category identification. Nature Neuroscience, 7
(5), 555–562. https://doi.org/10.1038/nn1224

Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R.
(2000). Brain areas involved in perception of biological motion. Journal of Cognitive
Neuroscience, 12(5), 711–720. https://doi.org/10.1162/089892900562417

Gurnee, W., & Tegmark, M. (2024). Language Models Represent Space and Time (arXiv:2
310.02207). arXiv http://arxiv.org/abs/2310.02207.

Hairston, W. D., Hodges, D. A., Casanova, R., Hayasaka, S., Kraft, R., Maldjian, J. A., &
Burdette, J. H. (2008). Closing the mind’s eye: Deactivation of visual cortex related
to auditory task difficulty. Neuroreport, 19(2), 151–154.

Halpern, A. R., Zatorre, R. J., Bouffard, M., & Johnson, J. A. (2004). Behavioral and
neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42(9),
1281–1292. https://doi.org/10.1016/j.neuropsychologia.2003.12.017

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., & Pollmann, S.
(2009). PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data.
Neuroinformatics, 7(1), 37–53. https://doi.org/10.1007/s12021-008-9041-y

Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action
words in human motor and premotor cortex. Neuron, 41(2), 301–307. https://doi.
org/10.1016/S0896-6273(03)00838-9
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