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Going beyond the literal meaning of language is key to communicative success. However,

the mechanisms that support non-literal inferences remain debated. Using a novel meta-

analytic approach, we evaluate the contribution of linguistic, social-cognitive, and execu-

tive mechanisms to non-literal interpretation. We identified 74 fMRI experiments (n ¼ 1,430

participants) from 2001 to 2021 that contrasted non-literal language comprehension with a

literal control condition, spanning ten phenomena (e.g., metaphor, irony, indirect speech).

Applying the activation likelihood estimation approach to the 825 activation peaks yielded

six left-lateralized clusters. We then evaluated the locations of both the individual-study

peaks and the clusters against probabilistic functional atlases (cf. anatomical locations,

as is typically done) for three candidate brain networksdthe language-selective network

(Fedorenko, Behr, & Kanwisher, 2011), which supports language processing, the Theory of

Mind (ToM) network (Saxe & Kanwisher, 2003), which supports social inferences, and the

domain-general Multiple-Demand (MD) network (Duncan, 2010), which supports executive

control. These atlases were created by overlaying individual activation maps of partici-

pants who performed robust and extensively validated ‘localizer’ tasks that selectively

target each network in question (n ¼ 806 for language; n ¼ 198 for ToM; n ¼ 691 for MD). We

found that both the individual-study peaks and the ALE clusters fell primarily within the

language network and the ToM network. These results suggest that non-literal processing

is supported by both i) mechanisms that process literal linguistic meaning, and ii) mech-

anisms that support general social inference. They thus undermine a strong divide
altimore, MD, 21218, USA.
om 46-3037, Cambridge, MA, 02139, USA.
. Hauptman), evelina9@mit.edu (E. Fedorenko).

rved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2023.01.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2023.01.013&domain=pdf
mailto:mhauptm1@jhu.edu
mailto:evelina9@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2023.01.013&domain=pdf
www.sciencedirect.com/science/journal/00109452
www.elsevier.com/locate/cortex
https://doi.org/10.1016/j.cortex.2023.01.013
https://doi.org/10.1016/j.cortex.2023.01.013
https://doi.org/10.1016/j.cortex.2023.01.013


c o r t e x 1 6 2 ( 2 0 2 3 ) 9 6e1 1 4 97
between literal and non-literal aspects of language and challenge the claim that non-literal

processing requires additional executive resources.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Communicative success often requires going beyond access-

ing literal meanings of words and combining words to

construct phrases and sentences (e.g., Grice, 1975; Sperber &

Wilson, 1986). Knowledge of ‘non-literal’ meanings of words

and phrases (e.g., metaphors, idioms), as well as reliance on

contextual information and extra-linguistic cues, like prosody

and gestures, are in many cases necessary for apprehending

the intended meaning of linguistic input. The neurocognitive

mechanisms that support lexical access and phrase-structure

building in comprehension and production are fairly well

characterized (e.g., Fedorenko, Blank, Siegelman, & Mineroff,

2020), but the mechanisms that enable comprehension

beyond those core linguistic processes remain debated. In the

remainder of the paper, we use the term ‘non-literal language

comprehension’ to refer to the gamut of cognitive processes

related to language comprehension that go beyond lexical

access and phrase-structure building. Our use of this term is

broader than in some other prior papers and encompasses a)

classic non-literal phenomena like metaphors; b) discourse-

level comprehension; c) pragmatic phenomena like irony;

and d) prosody.

Early patient investigations linked difficulties in non-literal

interpretation with damage to the right hemisphere (RH) (e.g.,

Brownell, Michel, Powelson,&Gardner, 1983, 1986; Bryan, 1988;

Joanette, Goulet,&Hannequin, 1990; Burgess& Chiarello, 1996;

Delis, Wapner, Gardner, & Moses, 1983; Myers, 1998; Myers &

Linebaugh, 1981; Weylman, Brownell, Roman, & Gardner,

1989; Winner & Gardner, 1977). This work motivated the

coarse semantic coding hypothesis (Beeman & Chiarello, 1998;

Jung-Beeman, 2005), which posits a RH advantage for pro-

cessing distantly related concepts, a central aspect of under-

standing non-literal phenomena such as metaphor. More

recently, a growing number of empirical studies have chal-

lenged the notion of RH dominance in non-literal processing:

brain imaging experiments (e.g., Rapp, Leube, Erb, Grodd, &

Kircher, 2004; Lee & Dapretto, 2006; Bosco, Parola, Valentini,

& Morese, 2017; see also Oliveri, Romero, & Papagno, 2004),

meta-analyses of such studies (e.g., Bohrn, Altmann, & Jacobs,

2012; Rapp, Mutschler, & Erb, 2012; Reyes-Aguilar, Valles-

Capetillo, & Giordano, 2018), and patient investigations

(Ianni, Cardillo, McQuire,& Chatterjee, 2014; Cardillo, McQuire,

& Chatterjee, 2018; Klooster et al., 2020; see Giora, Zaidel,

Soroker, Batori, & Kasher, 2000; Zaidel, Kasher, Soroker, &

Batori, 2002; Klepousniotou & Baum, 2005 for evidence of

bilateral involvement) have instead implicated the left hemi-

sphere (LH).

Importantly, both the left and the right hemisphere each

contain multiple distinct functional networks, including the
language-selective network (e.g., Fedorenko et al., 2011) and

its right homotope, the Theory of Mind network (e.g., Saxe &

Kanwisher, 2003), and the domain-general Multiple Demand

network (e.g., Duncan, 2010). These networks are associated

with distinct cognitive operations, all of which have been

argued to contribute to non-literal language comprehension,

including in individuals with communication disorders: lin-

guistic processing (e.g., Beaty & Silvia, 2013; Papagno &

Genoni, 2004; Whyte & Nelson, 2015), social inference (e.g.,

Happ�e, 1993; Sperber & Wilson, 1986; Winner, Brownell,

Happ�e, Blum, & Pincus, 1998), and executive control (e.g.,

Champagne-Lavau & Stip, 2010; McDonald & Pearce, 1998),

respectively. As a result, focusing on the question of hemi-

spheric dominance alone has limited utility with regard to

questions about the cognitive mechanisms underlying non-

literal language processing.

In an effort to characterize the cognitive mechanisms un-

derlying non-literal language processing, past neuroimaging

studies have primarily relied on the anatomical locations of

group-level effects to identify the relevant cognitive pro-

cesses. However, the traditional group-averaging approach is

limited in the inferences it affords about cognitive processes.

In particular, in this approach, individual activation maps are

averaged in the common space and the resulting activation

peaks are interpreted via reverse inference from anatomy to

function (Fedorenko, 2021; Poldrack, 2006, 2011). For example,

an activation peak in a study on non-literal comprehension

that falls within the inferior frontal gyrus may be interpreted

as indexing the engagement of cognitive control mechanisms

because some past studies that targeted cognitive control re-

ported activation there. Such inferences are not warranted

because functional areas vary substantially in their precise

locations across individual brains, particularly within the as-

sociation cortex (e.g., Fischl et al., 2008; Frost & Goebel, 2012;

Tahmasebi et al., 2012). Consequently, any given location in

the group space may correspond to distinct networks across

individual participants (e.g., the language network in one

participant, and the Multiple Demand network in another

participant; Fedorenko & Blank, 2020).

The use of individual-subject analyses, or ‘precision fMRI’,

offers a way to circumvent high inter-individual variability in

the locations of functional networks. In this approach, the

relevant areas are identified in individual brains using robust

and extensively validated ‘localizer’ tasks that selectively

target particular functional areas/networks (e.g., Kanwisher

et al., 1997; Saxe, Moran, Scholz, & Gabrieli, 2006; Fedorenko,

Hsieh, Nieto-Casta~n�on, Whitfield-Gabrieli, & Kanwisher,

2010, 2013; Shashidara et al., 2019; Fedorenko, 2021; Gratton &

Braga, 2021). The recruitment of these areas during some new,

critical condition(s) is then examined. For example, a

researchermay identify theMultiple Demand network using a

https://doi.org/10.1016/j.cortex.2023.01.013
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robust working-memory-based localizer, and then ask

whether these same areas, which are active when partici-

pants engage in working memory tasks, are also active when

participants comprehend a particular type of non-literal lan-

guage. In thisway, the functional localization approach allows

for a much more straightforward interpretation of a phe-

nomenon with respect to its underlying cognitive processes

and has already helped address many questions that could

not be answered using the traditional group-averaging

approach (e.g., Braga & Buckner, 2017; Deen, Koldewyn,

Kanwisher, & Saxe, 2015; Fedorenko et al., 2011).

Despite the limitations of the group-averaging approach,

we would ideally not abandon many hundreds of past fMRI

studies. Here we develop an analysis method that integrates

individual-subject functional localization and traditional

group-averaging experiments and apply it to studies of lin-

guistic phenomena that fall within our broad definition of

non-literal language processing. The critical innovation that

has enabled this method is the use of probabilistic functional

atlases (e.g., Dworetsky et al., 2021; Lipkin et al., 2022a; Thirion,

Thual, & Pinho, 2021). Such atlases are created from large

numbers of individuals (n > 100 for all atlases used here) who

have performed extensively validated functional localizers

that selectively target particular functional networks. Because

these atlases capture inter-individual variability in the loca-

tions of the relevant networks, we can estimate for any given

location in the common space the probability that it belongs to

each candidate network. In other words, the probabilistic

atlases provide a layer of information beyond anatomy.

This new approach differs from other commonly used

meta-analytic approaches, particularly the Activation Likeli-

hood Estimation (ALE; Turkeltaub, Eden, Jones,& Zeffiro, 2002;

Eickhoff et al., 2009) approach. The interpretation of ALE es-

timates still relies on reverse inference from anatomical

landmarks, or on comparisons between the results ofmultiple

meta-analyses performed on group-level data. As such, inter-

individual variability in functional architecture is not taken

into account. A consequence is that the functional resolution

of ALEdits ability to discriminate between nearby functional

networksdis low (the logic described in Nieto-Casta~n�on &

Fedorenko, 2012 for simple group analyses also applies to

ALE meta-analyses).

The current approach also offers different information

from the information that can be obtained from the Neuro-

Synth database (Yarkoni, Poldrack, Nichols, Van Essen, &

Wager, 2011). NeuroSynth contains information about acti-

vation peaks that are reported in a large number of past group-

level fMRI studies. These peaks are associated with keywords

that correspond to different cognitive constructs. However,

Neurosynth i) extracts activation peaks from the results tables

regardless of the nature of the contrast (e.g., for a study that

compares a literal and a non-literal condition for some phe-

nomenon, it would extract peaks for both the non-

literal > literal contrast and the literal > non-literal contrasts;

and ii) extracts keywords regardless of how they are used in a

given paper (e.g., for a study that argues that general working

memory brain areas are dissociated from brain areas that

support language processing, NeuroSynth would extract key-

words such as “working memory” and “language”, and
whatever peaks are reported in the results tablesddistinct

peaks for the two sets of areasdwould become linked with

both keywords). Because the probabilistic atlases we use are

constructed using tasks that have been selectively and robustly

linked to particular cognitive processes, relating the locations

of peak activations to these atlases affords both a higher de-

gree of interpretability and a straightforward way to link the

results to those from studies that rely on individual-subject

functional localization.

In the present study, we examined data from past fMRI

studies (74 studies, 825 activation peaks) that contrasted neural

responses to non-literal vs literal conditions across diverse

phenomena with respect to three candidate networks: the

language-selective network (Fedorenko et al., 2011), which

supports language processing, the Theory of Mind (ToM)

network (Saxe & Kanwisher, 2003), which supports social in-

ferences, and the domain-general Multiple Demand (MD)

network (Duncan, 2010), which supports executive control. In

addition to incorporating probabilistic functional atlases in a

novel manner, our meta-analysis improves upon past meta-

analyses of non-literal language (e.g., Bohrn et al., 2012; Rapp

et al., 2012; Reyes-Aguilar et al., 2018) in that we a) include a

larger number of studies, b) focus on targeted, more inter-

pretable contrasts (i.e., non-literal > literal; cf. non-

literal > fixation), and c) examine a larger number of phe-

nomena that fall within a broad definition of non-literal lan-

guage. To foreshadow our results, we find support for the role

of the language-selective and ToM networks, but not the MD

network, in non-literal interpretation. Further, in linewith past

meta-analyses of non-literal language processing (Bohrn et al.,

2012; Rapp et al., 2012; Reyes-Aguilar et al., 2018), we do not find

support for an RH bias: the majority of peaks fall in the LH.
2. Materials and methods

In the following sections, we report how we determined our

sample size, all inclusion/exclusion criteria (which were

established prior to data analysis), all manipulations, and all

measures in the study. Materials and data for the study are

available at: https://osf.io/wfsnj/. No part of the study pro-

cedures or analyses was pre-registered prior to the research

being conducted.

2.1. Article selection criteria

A literature search was conducted in accordance with PRISMA

guidelines (Moher, Liberati, Tetzlaff, Altman, & Group, 2009).

Relevant studies were identified in NeuroSynth, Google Scholar,

APA PsycInfo, and PubMed databases using Boolean searches

containing each of the following keywords: “anaphora,”

“anthropomorphism,” “comedy,” “discourse comprehension,”

“figurative language,” “figure of speech,” “hyperbole,”

“humor”, “idioms,” “indirect request,” “indirect speech,”

“ironic,” “irony,” “jokes,” “lying,” “metaphor,” “metonymy,”

“narrative,” “non-literal language,” “oxymoron,” “paradox,”

“personification,” “platitude,” “pragmatics,” “prosody,” “prov-

erbs,” “pun,” “sarcasm,” “sarcastic,” “saying,” “speech act,”

“synecdoche,” “text coherence,” “text comprehension,” and

https://osf.io/wfsnj/
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“understatement”, plus the disjunctive combination of “fMRI,”

“brain,” and “neuroimaging.” All non-literal keywords

appeared either in prior fMRI meta-analyses (e.g., Bohrn et al.,

2012; Ferstl, Neumann, Bogler, & von Cramon, 2008; Rapp

et al., 2012; Reyes-Aguilar et al., 2018) or in theoretical and

experimental papers that focus on linguistic phenomena that

extend beyond lexical access and phrase-structure building

(e.g., Graesser, Singer, & Trabasso, 1994; Gibbs, 1994, 2002;

Colston & O'Brien, 2000; Demorest, Silberstein, Gardner, &

Winner, 1983; Grice, 1975).

In addition to conducting database searches using non-

literal language keywords, we also examined the reference

lists of past neuroimaging meta-analyses on non-literal lan-

guage processing to minimize the possibility of missing rele-

vant studies (Bohrn et al., 2012; Farkas et al., 2021; Ferstl et al.,

2008; Lisofsky, Kazzer, Heekeren, & Prehn, 2014; Rapp et al.,

2012; Reyes-Aguilar et al., 2018; Vartanian, 2012; Vrticka,

Black, & Reiss, 2013; Yang, 2014; Yang & Shu, 2016).

260 articles were selected for full-text screening based on

the content of their abstracts. The selection criteria included:

(1) fMRI (not PET or MEG/EEG) was used; (2) participants were

neurotypical, and not aging, adults; (3) participants were

native speakers of the language in which the experiment was

conducted; (4) a standardwhole-brain randomeffects analysis

(Holmes & Friston, 1998) was performed; (5) activation peaks

were reported in Talairach (Talairach & Tournoux, 1988) or

Montreal Neurological Institute (MNI) (Evans et al., 1993) co-

ordinate systems; and (6) contrasts targeted non-literal lan-

guage comprehension, in the listening or reading modality,

versus a literal (or “less non-literal”) linguistic baseline (cf.

coarser-grain contrasts like non-literal language processing vs

fixation). The 74 studies that satisfied these criteria were

published between 2001 and 2021 and targeted ten linguistic

phenomena (Table 1). Across these 74 studies, 825 activation

peaks (from 102 contrasts, between 1 and 4 contrasts per

study) were extracted for analysis. Participants included 1,430

individuals (between 8 and 39 individuals per study; M ¼ 19.2)

aged 18 to 55 (M ¼ 24.8 years), 55% female (see SI Table 1 for
Table 1 e Distribution of studies and peaks across
linguistic phenomena. (One of the 74 studies included
separate contrasts for non-sarcastic irony and sarcasm
and is therefore counted twice in the table.) Studies on
prosody that focused on the role of emotionally charged
prosodic cues were excluded.

Linguistic
phenomenon

Number of
studies

Number of
peaks

Humor 8 121

Idiom 6 54

Indirect Speech 10 160

Irony 10 68

Metaphor 19 201

Metonymy 2 10

Prosody 4 64

Proverb 1 9

Sarcasm 2 10

Text Coherence 13 128

TOTAL 74 unique studies 825
further details). Table 1 summarizes the distribution of

studies and peaks across the ten phenomena.

2.2. The probabilistic functional atlases for the three
brain networks of interest

The individual activation peaks and the clusters derived from

these peaks via the standard activation likelihood estimation

(ALE) analysis (e.g., Eickhoff et al., 2009; Turkeltaub et al.,

2002), as described below (section Activation likelihood esti-

mation (ALE) analysis), were evaluated with respect to prob-

abilistic functional atlases for three candidate networks of

interest: the language network, the Theory of Mind (ToM)

network, and the Multiple Demand (MD) network. For each

network, an activation overlapmapwas created by overlaying

a large (n > 100) number of individual, binarized activation

maps for the ‘localizer’ task targeting that network, as

described below (this is the first step in the Group-Constrained

Subject-Specific analytic approach, as described in Fedorenko

et al., 2010 and Julian, Fedorenko, Webster, & Kanwisher,

2012). To account for inter-individual variability in the over-

all level of activation, we selected in each individual the top

10% most localizer-responsive voxels across the brain (fixed-

statistical-threshold approaches yield near-identical results;

Lipkin et al., 2022a). Specifically, we sorted the t-values for the

relevant contrast and took 10% of voxels per participant with

the highest values. In the resulting activation overlapmap, the

value in each voxel represents the number of participants for

whom that voxel belongs to the top 10% most localizer-

responsive voxels. These valuesdturned into proportions by

dividing each value by the total number of participants that

contribute to the overlap mapdcan then be used to estimate

the probability that a given voxel belongs to the target

network. Consider the extreme cases: if a voxel does not

belong to the top 10% most localizer-responsive voxels in any

participant, that voxel is extremely unlikely to belong to the

network of interest, and if a voxel belongs to the top 10%most

localizer-responsive voxels in every participant, that voxel is

extremely likely to belong to the network of interest. In

practice, for brain networks that support high-level cognitive

functions and fall within the association cortex, network

probability is unlikely to ever bes 1 because of high inter-

individual variability in the precise locations of these net-

works (e.g., Frost & Goebel, 2012; Tahmasebi et al., 2012), as

discussed above. Our degree of confidence in assigning a voxel

to a network will therefore be constrained by the maximum

inter-subject overlap value for that network.

The task used to localize the language network is described

in detail in Fedorenko et al. (2010) and targets brain regions

that support high-level language processing, including

phonological, lexical-semantic, and combinatorial (semantic

and syntactic) processes (e.g., Fedorenko et al., 2010, 2012,

2016, 2020; Bautista & Wilson, 2016; Blank, Balewski,

Mahowald, & Fedorenko, 2016; Regev et al., 2021). It also

identifies right-hemisphere homotopes of the left-

hemisphere language regions (e.g., Mahowald & Fedorenko,

2016), which have been proposed to play a role in non-literal

language comprehension/pragmatic reasoning (e.g., Joanette,

Goulet, Hannequin, & Boeglin, 1990; Kuperberg et al., 2000;

Mashal et al., 2005; Coulson & Williams, 2005; Diaz &

https://doi.org/10.1016/j.cortex.2023.01.013
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Fig. 1 e The three functional localizer paradigms (language, ToM, MD) and the resulting probabilistic functional atlases. The

maps illustrate, for each voxel, the proportion of participants for whom that voxel belongs to the top 10% of localizer-

responsive voxels. Despite the apparent “overlap” between language and ToM regions at the level of the probabilistic

atlases, these networks show little to no overlap in individual participants (see Blank et al., 2014; Paunov et al., 2019; Braga

et al., 2020).

Table 2 eDetails on the design and timing of the language,
ToM and MD localizer tasks.

Language ToM MD

Design Blocked Long-event-related Blocked

Length of trial 4.8e18 sec 14 sec 8e9 sec

Trials per block 1e5 N/A 2e4

Blocks/events

per run

12e18 10 10e12

Blocks/events per

condition per run

4e16 5 5e6

Length of run 336e504 sec 272 sec 288e448 sec

Runs 2e8 1e2 2e4

Versions of the

design

10 1 3

c o r t e x 1 6 2 ( 2 0 2 3 ) 9 6e1 1 4100
Hogstrom, 2011b; Eviatar & Just, 2006). Briefly, we used a

reading task that contrasted sentences (the critical condition)

and lists of unconnected, pronounceable nonwords (the con-

trol condition; Figure 1) in a standard blocked design with a

counterbalanced condition order across runs. By design, this

localizer contrast subtracts out lower-level perceptual (speech

or reading-related) and articulatory motor processes (see

Fedorenko & Thompson-Schill, 2014 for discussion) and has

been shown to generalize across materials, tasks, visual/

auditory presentation modality, and languages (e.g., Ayyash

et al., 2021; Chen et al., 2021; Malik-Moraleda et al., 2022;

Fedorenko, 2014; Fedorenko et al., 2010; Ivanova et al., 2020;

Scott, Gall�ee, & Fedorenko, 2017). Further, this network

emerges robustly from task-free naturalistic data (e.g., Braga,

DiNicola, Becker, & Buckner, 2020; see also Blank, Kanwisher,

& Fedorenko, 2014, Paunov et al., 2019). Participants read the

stimuli one word/nonword at a time in a blocked design, with

condition order counterbalanced across runs. Each sentence/

nonword sequence was followed by a button-press task to

maintain alertness. A version of this localizer is available from
https://evlab.mit.edu/funcloc/download-paradigm, and the

details of the procedure and timing are described in Figure 1

and Table 2. The probabilistic functional atlas used in the

current study (Language Atlas (LanA); Lipkin et al., 2022a) was

https://evlab.mit.edu/funcloc/download-paradigm
https://doi.org/10.1016/j.cortex.2023.01.013
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constructed using data from 806 participants, and the

voxel with the highest network probability had a value of .82

(i.e., belonged to the top 10% of most language-responsive

voxels in 82% of participants).

The task used to localize the ToM network is described in

detail in Saxe & Kanwisher (2003) and targets brain regions

that support reasoning about others'mental states. Briefly, we

used a task based on the classic false belief paradigm

(Wimmer & Perner, 1983) that contrasted verbal vignettes

about false beliefs (e.g., a protagonist has a false belief about

an object's location; the critical condition) versus vignettes

about false physical states (physical representations depicting

outdated scenes, e.g., a photograph showing an object that

has since been removed; the control condition; Figure 1). By

design, this localizer focuses on ToM reasoning to the exclu-

sion of affective or non-propositional aspects of mentalizing

and has been shown to generalize across materials (verbal

and non-verbal), tasks, and visual/auditory presentation

modality (e.g., Gallagher et al., 2000; Jacoby, Bruneau, Koster-

Hale, & Saxe, 2016; Saxe et al., 2006; Saxe & Powell, 2006; Saxe

& Kanwisher, 2003). Furthermore, this network emerges

robustly from task-free naturalistic data (e.g., Braga &

Buckner, 2017; DiNicola, Braga, & Buckner, 2020; see also

Paunov et al., 2019). Participants read the vignettes one at a

time in a long-event-related design, with condition order

counterbalanced across runs. Each vignette was followed by a

true/false comprehension question. A version of this localizer

is available from http://saxelab.mit.edu/use-our-efficient-

false-belief-localizer, and the details of the procedure and

timing are described in Figure 1 and Table 2. The probabilistic

functional atlas used in the current study (unpublished data

from the Fedorenko lab) was constructed using data from 198

participants, and the voxel with the highest network proba-

bility had a value of .88.

The task used to localize the MD network is described in

detail in Fedorenko et al. (2013a, 2013b) (see also Blank et al.,

2014) and targets brain regions that are sensitive to general

executive demands. Briefly, we used a spatial workingmemory

task that contrasted a harder and an easier condition. On each

trial, participants saw a 3 x 4 grid and kept track of eight (the

critical, harder, condition) or four (the control, easier, condition;

Figure 1) locations that were sequentially flashed two at a time

or one at a time, respectively. Participants indicated their

memory for these locations in a two-alternative, forced-choice

paradigm via a button press. Feedbackwas provided after every

trial. There is ample evidence that demanding tasks of many

kinds activate this network (e.g., Duncan & Owen, 2000;

Fedorenko et al., 2013a, 2013b; Hugdahl, Raichle, Mitra, &

Specht, 2015; Shashidara et al., 2019; and Assem, Blank,

Mineroff, Ademo�glu, & Fedorenko, 2020). Furthermore, this

network emerges robustly from task-free naturalistic data (e.g.,

Assem, Blank, et al., 2020; Braga et al., 2020; see also Blank et al.,

2014; Paunov, Blank, & Fedorenko, 2019). Hard and easy con-

ditions were presented in a blocked design, with condition

order counterbalanced across runs. This localizer is available

from the authors upon request and the details of the procedure

and timing are described in Figure 1 and Table 2. The probabi-

listic functional atlas used in the current study (MDAtlas; Lipkin

et al. 2022b, in prep.) was constructed using data from 691

participants, and the voxel with the highest network
probability had a value of .75. (It is worth noting that the three

networks of interest differ somewhat in the range of their non-

zero network probability values: language ¼ .001e.82,

ToM ¼ .005e.88, and MD ¼ .001e.75. We decided against

normalizing these values for each map (so that the highest

network probability would be set to 1, or to the highest value

observed across any of the three networks) because doing so

would obscure meaningful differences in the likelihood that a

given voxel belongs to each network.)

Critically, these three networks are robustly spatially and

functionally dissociable within individuals in both naturalistic

(e.g., Blank et al., 2014; Paunov et al., 2019; Braga et al., 2020)

and task-based fMRI paradigms despite their close proximity

to each other within the association cortex. The language

network selectively supports linguistic processing, showing

little or no response to diverse executive function tasks (e.g.,

Fedorenko et al., 2011; Monti, Parsons, & Osherson, 2012; see

Fedorenko & Blank, 2020 for a review) and mentalizing tasks in

individual participants (Deen et al., 2015; Paunov et al., 2019;

Paunov et al., 2022; Shain, Paunov, Chen, Lipkin, & Fedorenko,

2022). The data from the patient literature mirrors this selec-

tivity: damage to the language network does not appear to lead

to difficulties in executive or social processing (see Fedorenko

& Varley, 2016 for a review). The ToM network selectively

supports social cognition, showing little or no response to

linguistic input without mental state content (Deen et al., 2015;

Deen & Freiwald, 2021; Paunov et al., 2022; Shain et al., 2022) or

to executive demands (Saxe et al., 2006; Scholz, Triantafyllou,

Whitfield-Gabrieli, Brown, & Saxe, 2009; Willems et al., 2010).

Finally, the MD network supports diverse executive demands

(e.g., Assem, Blank, et al., 2020; Duncan, 2010, 2013; Smith,

Perez, Porter, Dworetsky, & Gratton, 2021b) and is linked to

fluid reasoning ability (e.g., Assem, Glasser, Van Essen, &

Duncan, 2020; Woolgar et al., 2010), but plays a limited role

in language comprehension once task demands are controlled

for (e.g., Diachek, Blank, Siegelman, Affourtit, & Fedorenko,

2020; Shain, Blank, van Schijndel, Schuler, & Fedorenko,

2020; Wehbe et al., 2021; see Fedorenko & Shain, 2021 for a

review), and in social cognition (e.g., Willems et al., 2010).

Because of the selective relationship between each of the three

networks and a particular set of cognitive processes, activity in

these networks can be used as an index of the engagement of

the relevant processes (see e.g., Mather, Cacioppo, &

Kanwisher, 2013, for discussion), circumventing the need for

precarious reverse inference from anatomical locations to

function (e.g., Poldrack, 2006, 2011; Fedorenko, 2021). This is

the approach that is adopted in studies that rely on functional

localization (e.g., Brett, Johnsrude, & Owen, 2002; Fedorenko,

2021; Saxe et al., 2006). Here, we extend this general logic to

the meta-analysis of group-level activation peaks by

leveraging information about the landscape of each network of

interest based on probabilistic functional atlases for the rele-

vant localizer tasks.

2.3. Extracting network probabilities for the individual-
study peaks

Prior to analysis, activation peaks that were reported in

Talairach space were converted to the MNI space using

icbm2tal transform SPM conversion in GingerALE 3.0.2

http://saxelab.mit.edu/use-our-efficient-false-belief-localizer
http://saxelab.mit.edu/use-our-efficient-false-belief-localizer
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(Eickhoff et al., 2009, 2012). The MNI coordinates of the 825

activation peaks included in the dataset were tested against the

probabilistic functional atlases (created as described above,

section The probabilistic functional atlases for the three brain

networks of interest) for each of the three functional networks

of interest. For each coordinate, three network probability

values were extracted (one from each functional atlas). (Note

that because of the variability in the precise locations of func-

tional areas and the proximity of the three networks to each

other in parts of the association cortex, many voxels have non-

zero values formore than a single network (despite the fact that

there is little to no overlap among the networks in individual

participants)dthis is precisely the argument against traditional

group-averaging analyses in fMRI; e.g., Fedorenko & Blank,

2020; DiNicola & Buckner, 2021; Fedorenko, 2021; Gordon &

Nelson, 2021; Gratton & Braga, 2021; Smith, Duncan, et al.,

2021a). It is also important to note that what we refer to

throughout the manuscript as ‘probability values’ (which may

be taken to mean posterior probabilities, i.e., p (language |

voxel)) are, in fact, likelihood values (e.g., p (voxel | language),

i.e., the probability that a voxel will be active during linguistic

processing based on the percentage of people who show ac-

tivity in that voxel for the language localizer contrast). This

distinction does notmatter given that our critical tests compare

across different networks (rather than, for example, trying to

estimate an absolute belief for any particular network).

2.4. Activation likelihood estimation (ALE) analysis

In addition to examining the individual-study activation

peaks, we used the GingerALE software (Eickhoff et al., 2009,

2012) to perform a traditional fMRI meta-analysis via the

activation likelihood estimation (ALE) method (Turkeltaub

et al., 2002). ALE identifies regions that show consistent acti-

vation across experiments (Eickhoff et al., 2009, 2012). The

clusters that ALE yields should be less noisy than the

individual-study activation peaks, especially when multiple-

comparison correction is not appropriately applied and

participant sample sizes are small in individual studies (e.g.,

Chen, Lu, & Yan, 2018; Eklund, Nichols, & Knutsson, 2016;

Genovese, Lazar, & Nichols, 2002).

The 74 studies in our dataset yielded 825 activation peaks

(Table 1; see SI Table 1 for a complete list of studies), but 39

peaks (less than 5%) fell outside the MNI template used by

GingerALE and were therefore excluded, leaving 786 peaks.

For each study, a map was created in which each voxel in the

MNI space received a modeled activation score. Modeled

activation scores reflect the likelihood that significant acti-

vation for one particular experiment was observed at a given

voxel. The 74 modeled activation maps were then unified,

generating an ALE value for each voxel.

Significance was assessed by comparing the observed ALE

values to a null distribution that was generated by repeatedly

calculating ALE values using randomly placed activation peaks

(1,000 permutations). A cluster-forming threshold of p < .001

(uncorrected) identified contiguous volumes of significant

voxels (“clusters”), and clusters that survived a cluster-level

family-wise error (FWE) of p < .05 were considered significant.

Cluster-level FWE correction has been argued to be the most
appropriate correction for ALE, as it minimizes false positives

while remainingmore sensitive to true effects in comparison to

other correction methods (Eickhoff et al., 2016).

Applying ALE to the 74 experiments yielded six significant

clusters that were located in the left frontal and temporal

cortex, and in the left amygdala (SI Figure 1). The clusters

varied in size from 176 to 1,695 voxels.

2.5. Critical analyses

We asked two key research questions: the first, critical ques-

tion examines the locations of the activation peaks with

respect to the three brain networks of interest: the language

network, the ToM network, and the MD network, and the

second question is motivated by the prior claim about the

privileged role of the right hemisphere in non-literal language

processing (e.g., Winner & Gardner, 1977). Note that in all the

analyses, we collapse the data from across the ten non-literal

phenomena. We adopted this approach because i) none of the

phenomena have a sufficient number of studies to enable

meaningful phenomenon-level examination, and ii) there is

currently a lack of consensus about the ways to carve up the

space of non-literal phenomena (see Discussion). However, in

an exploratory analysis, we examined the contribution of

different phenomena to the peaks/clusters that load on the

functional networks.

Q1: How are the activation peaks from prior fMRI studies of non-

literal language comprehension distributed across the language,

ToM, and MD networks?

2.5.1.1. Analysis of individual-study peaks
We evaluated the locations of the activation peaks with

respect to our three brain networks of interest (language, ToM,

MD). Almost all the peaksd820/825 (99%)dwere observed in

voxels with a non-zero network probability in at least one

functional atlas. To test whether the network probabilities

associated with the activation peaks differed between the

networks, we developed the following statistical procedure

(note that for all analyses, we excluded the 13 peaks that fell

on the cortical midline, i.e., had an x coordinate value of 0,

given that we wanted to examine each network in each

hemisphere separately, which left 812 peaks for analysis).

1) For each of the 812 peaks, we calculated the difference in

network probabilities between each pair of networks (lan-

guage vs ToM, language vs MD, and ToM vs MD), and

recorded the median (across peaks) of these difference

values for each of the three contrasts in each hemisphere

separately. (We used median instead of mean values to

better capture the central tendencies given the skewness of

the distributions.)

2) We then created 3D maps from which random peak sets

could be selected (against which the location of true

observed peaks could be evaluated, as described in Step 4

below). Specifically, we created a map for each hemisphere

whereby we removed the voxels whose locations were

associated with a network probability of 0 in all three

functional atlases (for the language, ToM, and MD

https://doi.org/10.1016/j.cortex.2023.01.013
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networks). This restrictionwas imposed so as to a) constrain

the locations of the baseline voxel sets to the parts of the

brain where true observed peaks were found (as noted

above, almost all the peakswere observed in voxels that had

a non-zero network probability in at least one network); and

thus, b) to construct a more conservative test, making it

more difficult to detect between-network differences.

3) In each hemisphere, the same number of peaks as in our

dataset (n ¼ 490 in the LH, and n ¼ 322 in the RH) were then

randomly sampled from the maps that were created in

Step 2, and the median difference (across peaks) for each

contrast (language vs ToM, language vs MD, ToM vs MD)

was computed, as in Step 1. This procedure was repeated

10,000 times, yielding an empirical null distribution of

median network probability differences.

4) Finally, we compared the true median network probability

differences against the distribution of network probability

differences obtained in Step 3 to yield a significance value

for each of the three contrasts within each hemisphere.

2.5.1.2. Analysis of activation likelihood estimation (ALE)
clusters
We evaluated the locations of 1) the center peaks of the six

significant ALE clusters, and 2) all voxels contained within

each cluster with respect to our three brain networks of in-

terest (language, ToM, MD). Importantly, whereas individual

study peaks might be skewed by a single study with a partic-

ularly large number of activation peaks, ALE estimates

incorporate the sample size of each study and are therefore

less susceptible to this source of bias. To test whether the

network probabilities differed between the networks, we

evaluated the network probabilities of the voxels in each

cluster and, for each cluster individually, subsequently per-

formed the statistical procedure described above (in Analysis

of individual-study peaks).

Q2: Do the activation peaks from prior fMRI studies of non-literal

language comprehension exhibit a right hemisphere bias?

2.5.2.1. Analysis of individual-study peaks
To test whether the two hemispheres differed in the number

of the activation peaks, we ran two logistic mixed effect

regression models using the “lme4” package in R. The first

tested the full set of 812 activation peaks (excluding the 13

peaks that fell on the corticalmidline), and the second focused

on the subset of the 812 peaks (n ¼ 636) that exhibited a

network probability of .10 or greater in at least one network.

The second model was included to ensure that the results are

not driven by a subset of peaks that do not load strongly on

any of the three networks of interest. For both models, the

following formula was used, which included a random inter-

cept for experiment (n ¼ 74):

Location of a peak in LH or RH ~ 1 þ (1|Experiment)

2.5.2.2. Analysis of activation likelihood estimation (ALE)
clusters
We examined the locations of the six significant ALE clusters

with respect to hemisphere.
3. Results

3.1. Non-literal language comprehension draws
primarily on the language and ToM networks

Across the 812 non-midline peaks, the highest network

probability was observed for the ToM network functional

atlas (maximum¼ .86, mean¼ .19, SD¼ .18, median¼ .12; 802

total peaks with nonzero network probabilities), followed by

the language atlas (maximum ¼ .80, mean ¼ .17, SD ¼ .17,

median ¼ .10; 807 nonzero peaks), and the MD atlas

(maximum ¼ .65, mean ¼ .11, SD ¼ .14, median ¼ .04; 806

nonzero peaks). In both hemispheres, the median non-zero

network probabilities across the activation peaks numeri-

cally exceeded themedian non-zero probability values across

the functional atlases as a whole: language atlas (LH:

peaks ¼ .12, atlas ¼ .04; RH: peaks ¼ .07, atlas ¼ .04), ToM (LH:

peaks ¼ .13, atlas ¼ .04; RH: peaks ¼ .13, atlas ¼ .04), and MD

(LH: peaks ¼ .03, atlas ¼ .02; RH: peaks ¼ .04, atlas ¼ .02). See

Figure 2 for a depiction of the network probability distribu-

tions of the individual-study peaks for each network.

We then examined between-network differences in

network probabilities. Among the 490 LH peaks, the magni-

tude of the median difference in network probabilities was

highest between the language and MD networks (language vs

MD ¼ .07, language vs ToM ¼ .02, ToM vs MD ¼ .04). In the RH

(322 peaks), the magnitude of the median difference in

network probabilities was highest between the ToM and MD

networks (ToM vs MD ¼ .04, language vs ToM ¼ .02, language

vsMD¼ .02). Our permutation analysis (see Methods) revealed

that the LH activation peaks were located more centrally in

the language network than in either the ToM or the MD

network (both ps < .0001) and more centrally in the ToM

network than the MD network (p < .0001). The RH activation

peaks were located more centrally in the ToM network than

either the language or the MD network (both ps < .0001) and

more centrally in the language network than the MD network

(p < .0001) (see Figure 2). Importantly, this analysis controls for

network lateralization (language ¼ LH, ToM ¼ RH) by gener-

ating an empirical null distribution of probability differences

in each hemisphere separately. Higher network probabilities

observed in the language network among the LH voxels and in

the ToM network among the RH voxels therefore exceed what

would be expected given the (already-skewed) distribution of

network probabilities in each hemisphere.

With respect to the ALE clusters (see Table 3 and SI

Figure 1), the center peaks of four clusters, including the

largest cluster, exhibited the highest network probabilities in

the language atlas. Two of these were located in the left

temporal lobe (primarily within the superior and middle

temporal gyri), one within the left inferior frontal gyrus, and

onewithin the left amygdala (although note that the network

probability for the amygdala peak is overall relatively low

compared to the cortical peaks). The center peaks of two

additional clusters exhibited the highest network probabili-

ties in the ToM atlas. One of these clusters was located in the

left medial frontal gyrus and one in the left superior and

middle temporal gyri.

https://doi.org/10.1016/j.cortex.2023.01.013
https://doi.org/10.1016/j.cortex.2023.01.013


Fig. 2 e Individual peaks. The top panel displays individual activation peaks plotted on the smoothed (width ¼ 2; kernel

size¼ 3) cortical surface of a high-resolution structural MRI scan in MNI space. The bottom panel displays the distribution of

nonzero network probabilities associated with all individual peaks, by hemisphere. Significance of median differences

between networks was assessed via a permutation test; all ps < .0001.
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Analysis of the network probabilities associated with the

full set of voxels comprising each ALE cluster yielded similar

results (Table 3). The voxels in the four clusters whose center

peaks had the highest network probabilities in the language

atlas also exhibited the greatest median network probabilities in
Table 3eNetwork probabilities for the six significant ALE cluster
(in voxels)”. The “Broad Anatomical Area” column lists themacro
(as determined by the ALE). In the “Language,” “ToM,” and “MD”

associated with that cluster's center peak and the second value
contained in the cluster. In bold, we highlighted for each cluste

Cluster Size (in voxels) Hemisphere Broad Anatomical A

1 283 LH STG

2 357 LH MTG

3 1,695 LH IFG

4 176 LH Amygdala

5 528 LH STG

6 454 LH MedFG
the language atlas, whereas the voxels in the two clusters

whose center peaks had the highest network probabilities in

the ToM atlas also exhibited the greatest median network

probabilities in the ToM atlas. Results from the permutation

analysis supported this apparent distinction between the four
s. The number of voxels in each cluster is listed under “Size
anatomical region that overlaps themostwith each cluster
columns, the first value represents the network probability
represents the median network probability of all voxels
r the network that has the highest network probabilities.

rea x y z Language ToM MD

�54 �1 �16 .743/0.634 .348/0.298 .001/0.009

�55 �33 �3 .738/0.638 .394/0.323 .016/0.016

�47 26 3 .424/0.298 .273/0.177 .030/0.064

�23 �10 �17 .136/0.117 .030/0.040 .004/0.009

�49 �63 29 .197/0.272 .611/0.578 .016/0.028

�3 51 31 .355/0.227 .449/0.369 .012/0.022

https://doi.org/10.1016/j.cortex.2023.01.013
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“language” clusters and the two “ToM” clusters: voxels

comprising the language clusters had significantly higher

network probabilities in the language network than in the

ToM and MD networks, and voxels comprising the ToM clus-

ters had significantly higher network probabilities in the ToM

network than in the language andMDnetworks (all ps< .0001).

These results are displayed in Figure 3. In general, the median
Fig. 3 e Activation likelihood estimation (ALE) results. The top

significant ALE clusters, plotted on the smoothed (width ¼ 2; ke

MRI scan in MNI space (cluster-forming threshold ¼ p < .001 un

1000 permutations). The bottom panel displays the distribution

contained within each cluster. Significance of median differenc

all ps < .0001.
probability values obtained from the voxels comprising ALE

clusters are numerically higher than those observed in the

individual activation peaks that were submitted to the same

analysis. This likely reflects the inherent noisiness of indi-

vidual activation peaks culled from experiments that use

traditional group analyses and varied statistical correction

approaches. However, the probability values associated with
panel displays ALE scores associated with each of the 6

rnel size ¼ 3) cortical surface of a high-resolution structural

corrected, cluster-level family-wise error (FWE) ¼ p < .05,

of nonzero network probabilities associated with all voxels

es between networks was assessed via a permutation test;

https://doi.org/10.1016/j.cortex.2023.01.013
https://doi.org/10.1016/j.cortex.2023.01.013
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the individual activation peaks in our dataset, although

numerically low, are not random (see SI Figure 2 and SI

Figure 3).

Finally, in an exploratory analysis, we evaluated the phe-

nomena that contributed to the six significant ALE clusters

(see SI Table 2). No clear differentiation in terms of phenom-

ena that contribute to the language vs the ToM clusters was

apparent.

3.2. No evidence of an RH bias for non-literal language
comprehension

Of the full set of 812 peaks (excluding the 13 that fell on the

cortical midline), 322 peaks (~40%) were located in the RH,

and 490 (~60%) were located in the LH (Figure 4). This differ-

ence was highly reliable (b ¼ �.44, SE ¼ .1, z ¼ �4.42, p < .001).

Similarly, of the subset of the 636 peaks with network prob-

abilities of at least .10 in at least one network of interest, 245

peaks (~39%) were located in the RH, and 391 (~61%) were

located in the LH (Figure 4). This difference was highly reli-

able (b¼�.50, SE¼ .11, z¼�4.5, p < .001). ALE analysis yielded

six LH clusters and zero RH clusters, suggesting that the RH

peaks were less reliable across studies and may therefore

reflect spurious results (see also Bohrn et al., 2012), or that RH

involvement is specific to a small subset of non-literal

phenomena. Collectively, these findings provide additional

support for the notion that the LH is an important contrib-

utordperhaps more important than the RHdto non-literal
Fig. 4 e Peaks by hemisphere. In the top panel, A displays the nu

B displays the left vs right breakdown of non-midline peaks wi

network. Significance was assessed via logistic mixed effects re

of activation peaks in the left vs right hemisphere are shown in
language processing (Bohrn et al., 2012; Rapp et al., 2012;

Reyes-Aguilar et al., 2018).
4. Discussion

To illuminate the cognitive and neural bases of non-literal

language comprehension, we performed a meta-analysis of

group-level activation peaks from past fMRI studies. Specif-

ically, we developed a novel approach that leverages ‘proba-

bilistic functional atlases’ for three brain networks (the

language network, the Theory of Mind network, and the

Multiple Demand network) that have been implicated in non-

literal language comprehension, broadly construed. The

atlases are built using large numbers of individual activation

maps for extensively validated ‘localizer’ tasks (e.g.,

Fedorenko, 2021; Saxe et al., 2006) and provide estimates of the

probability that a location in the common brain space belongs

to a particular network. Because each of these networks has

been rigorously characterized and selectively linked to

particular cognitive processes in past work, activation peak

locations therein can be interpreted as evidence for the

engagement of the relevant process(es) (Mather et al., 2013).

This approach is therefore superior to the traditional meta-

analytic approach where activation peaks or ALE clusters

(Turkeltaub et al., 2002) are interpreted solely based on their

anatomical locations or in relation to the results of additional

meta-analyses.
mber of non-midline peaks in the left vs right hemisphere.

th a network probability of at least .10 in at least one

gression; all ps < .001. Pie charts displaying the proportion

the bottom panel.
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The three networks that we examined include i) the

language-selective network, which supports literal compre-

hension, including lexical and combinatorial operations

(Fedorenko et al., 2020), ii) the Theory of Mind (ToM) network,

which supports social inference, includingmentalizing (Saxe&

Kanwisher, 2003), and iii) the Multiple Demand (MD) network,

which supports executive control (Duncan, 2010). We asked

two research questions. The first, critical question concerned

the distribution of peaks across the networks. The individual

peaks and ALE clusters tended to fall in the language and ToM

networks, but not the MD network. The second question,

motivated by past patient investigations that have linked non-

literal comprehension impairments to RH damage (e.g.,

Winner & Gardner, 1977), asked whether the peaks were more

likely to fall in the RH. In line with past meta-analyses of non-

literal language (Bohrn et al., 2012; Rapp et al., 2012; Reyes-

Aguilar et al., 2018), we found that the peaks/clusters fell pri-

marily in the LH. Below, we discuss several issues that these

results inform, and highlight some outstanding questions and

some methodological implications.

4.1. The role of the ToM and language networks in non-
literal comprehension

In line with past studies that have reported activations in

putative ToM areas for non-literal phenomena (e.g., Feng

et al., 2017; Spotorno, Koun, Prado, Van Der Henst, &

Noveck, 2012; van Ackeren, Casasanto, Bekkering, Hagoort,

& Rueschemeyer, 2012), some individual study activation

peaks and two ALE clusters had a high probability of falling

within the ToM network. What is the role of mentalizingda

capacity supported by the ToM networkdin language

comprehension?

Because linguistic inputs often underspecify intended

meaning (Sperber & Wilson, 1986; Wittgenstein, 1953), lan-

guage comprehension routinely requires inferences about

communicative intent. The computation of such inferences

has historically been a focus of the field of pragmatics (Grice,

1957; 1975). Some early proposals drew a sharp boundary be-

tween literal and non-literal/pragmatic processing (Grice,

1975; Searle, 1979). However, defining the scope of pragmatic

inference has proven challenging, and many have questioned

the divide between literal and inferred meaning, or between

semantics and pragmatics (Jackendoff, 2002). But if no such

boundary exists, does understanding language always recruit

the ToM network, in addition to the language network, to

enable inferences about communicative intent?

The notion of continuous ToM engagement during lan-

guage comprehension does not seem a priori plausible (many

phenomena requiring context-based inferencesdlexical

disambiguation or pronoun resolutiondare so common that it

would seem inefficient and unnecessary to constantly engage

in full-blownmentalizing) and does not find empirical support

(Deen et al., 2015; Paunov et al., 2022; Shain et al., 2022). Yet, in

some cases, the ToM network does appear to contribute to

language comprehension (e.g., Spotorno et al., 2012). Delin-

eating the precise conditions under which comprehension

requires ToM resources remains an important goal for future

work (Paunov et al., 2022). Brain-imaging investigations

of diverse non-literal phenomena using approaches with
functionally localized ToM and language networks may offer

some clarity. These approaches could be complemented by

experiments that test linguistic abilities in individuals with

impaired ToM reasoning (e.g., Happ�e, Brownell, & Winner,

1999; Siegal, Carrington, & Radel, 1996) or in statistical lan-

guage models (Devlin, Chang, Lee, & Toutanova, 2019). The

latter can reveal which non-literal phenomena can be handled

by language models, and which might require additional

machinery that approximatesmental state inference (e.g., Hu,

Levy, & Zaslavsky, 2021, 2022).

Many individual study activation peaks and four ALE

clusters had a high probability of falling within the language

network. Of course, understanding both literal and non-literal

language requires language processing, so both conditions

should elicit a strong response in the language network. But

why do non-literal conditions often elicit a stronger response?

Differences in linguistic complexity might provide one

explanation. The brain's language areas are sensitive to

comprehension difficulty (Wehbe et al., 2021). Although

studies that compare literal and non-literal conditions

commonly match stimuli on some linguistic variables, this

matching is often limited to word-level features, which do not

account for potential differences in context-based processing

difficulty (e.g., surprisal; Smith & Levy, 2011). Further, despite

the robust dissociation between the language and ToM net-

works, Paunov et al. (2019) found that the two networks show

reliable correlation during language processing. This inter-

network synchronization may lead increased ToM demands

to additionally manifest in the language network via inter-

network connections. Finally, the language network may

actually support some pragmatic computations, although to

argue for such effects, linguistic confounds and inter-network

information leakage would need to be eliminated as possible

explanations.

4.2. No evidence for the role of the MD network in non-
literal comprehension

In contrast to the ToM and language networks, the Multiple

Demand network does not appear to support non-literal

comprehension: individual-study activation peaks and ALE

clusters were least likely to fall in this network. Selecting the

non-literal interpretation of linguistic input may tax working

memory (because multiple interpretations may be activated)

or require inhibitory control (e.g., Channon & Watts, 2003;

Gernsbacher & Robertson, 1999). However, recent work has

shown that any such operation related to linguistic processing

appears to be implemented within the language-selective

network (Shain et al., 2020; see Fedorenko & Shain, 2021 for

a review). Indeed, as discussed above, greater cognitive de-

mands associated with non-literal interpretation may well

explain the responses in the language network.

We suspect that neural activity observed during non-literal

processing in putative executive control areas in past studies

(e.g., AbdulSabur et al., 2014; Chan & Lavallee, 2015a,b; Bosco

et al., 2017) is due either to i) reliance on anatomical land-

marks, which do not warrant functional interpretation in the

association cortex (Fedorenko, 2021; Poldrack, 2006), or ii)

extraneous task demands (see Diachek et al., 2020 for evi-

dence that sentence comprehension only engages the MD

https://doi.org/10.1016/j.cortex.2023.01.013
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network when accompanied by a secondary task, like a

sentence judgment). Behavioral investigations that find

correlations between executive abilities and non-literal

interpretation abilities (e.g., Akbar, Loomis, & Paul, 2013;

Caillies, Bertot, Motte, Raynaud,&Abely, 2014; Rints, McAuley,

& Nilsen, 2015) are also likely affected by methodological is-

sues, from small sample sizes to confounded experimental

paradigms (Matthews, Biney, & Abbot-Smith, 2018). Indeed,

recent large-scale investigations (Cardillo et al., 2021; Fairchild

& Papafragou, 2021) argue against the role of executive func-

tions in pragmatic ability.

4.3. Possible reasons for the inconsistencies regarding
the hemispheric bias

One remaining puzzle concerns the difference between pa-

tient work, which has implicated the RH in non-literal lan-

guage processing (e.g., Winner & Gardner, 1977; Myers &

Linebaugh, 1981; Delis et al., 1983; Brownell et al., 1983,

1986; Van Lancker & Kempler, 1987; Brownell, 1988;

Stemmer, Giroux, & Joanette, 1994; Giora et al., 2000; Ferstl,

Walther, Guthke, & von Cramon, 2005; see also Jung-

Beeman, 2005) and our results, which demonstrate a LH

bias. As noted above, left-lateralized activations have also

been reported in past studies (e.g., Rapp et al., 2004; Lee &

Dapretto, 2006; Hillert & Bura�cas, 2009; Pi~nango et al., 2017;

Bosco et al., 2017) and meta-analyses (Bohrn et al., 2012;

Farkas et al., 2021; Rapp et al., 2012; Reyes-Aguilar et al.,

2018). One possibility is that no RH bias exists for non-

literal language processing. Both hemispheres contribute,

perhaps with the LH contributing more strongly, as per the

standard LH language bias (e.g., Geschwind, 1970). Because

lexical and grammatical impairments resulting from LH

damage are more salient and devastating, non-literal

comprehension difficulties go unnoticed. In contrast, RH

damage, which does not strongly affect basic language pro-

cessing, may make apparent more subtle linguistic impair-

ments, leading to the apparent RH bias for non-literal

comprehension. In line with this possibility, several studies

have reported that patients with LH damage show similar, or

even greater, deficits in non-literal comprehension

compared to RH-damaged patients (e.g., Cardillo et al., 2018;

Gagnon, Goulet, Giroux, & Joanette, 2003; Giora et al., 2000;

Ianni et al., 2014; Klepousniotou& Baum, 2005; Klooster et al.,

2020; Tompkins, 1990; Zaidel et al., 2002).

Alternatively, the RH may indeed contribute more strongly

than the LH to non-literal language comprehension, and past

fMRI studies may have failed to detect the RH effects due the

generally low sensitivity of the group-averaging analytic

approach (Nieto-Casta~n�on& Fedorenko, 2012). This possibility

seems unlikely: if the RH were more active than the LH during

non-literal comprehension, then RH activations should be

easier to detect in a group analysis. This is because stronger

responses would be more spatially extensive in individual

brains and thus more likely to lead to overlap at the group

level. (Further, using our probabilistic functional atlases, we

did not find evidence for the possibility that functional areas

in the RH are more variable in their locations across in-

dividuals and therefore less likely to emerge in a group anal-

ysis.) Future fMRI studies where areas of interest are identified
via functional localizers, as well as intracranial stimulation

studies, which enable spatially precise perturbations of neural

activity, can provide important insight into the hemisphere-

bias question.

4.4. Comparison with prior meta-analyses of non-literal
language

Our results are generally consistent with several prior meta-

analyses of non-literal language processing that report acti-

vation in left inferior frontal and anterior/middle temporal

lobes as individuals engage in non-literal interpretation

(Bohrn et al., 2012; Ferstl et al., 2008; Rapp, 2019; Rapp et al.,

2012; Reyes-Aguilar et al., 2018). However, in contrast to

previous meta-analyses, which focused on localizing regions

that support non-literal language processing (i.e., the

“where” question), our approach enables us tomake stronger

inferences about the underlying cognitive processesdlin-

guistic processing, mentalizing, or executive controldthat

non-literal comprehension involves (i.e., the “how” ques-

tion). Collectively, this and past work point to the primacy of

linguistic resources during non-literal language compre-

hension, where “non-literal language” encompasses lin-

guistic phenomena that extend beyond lexical access and

phrase-structure building. One possible explanation for the

recruitment of left-lateralized language areas is that non-

literal language processing places increased demand on

accessing meanings of words and constructions and

combining them into compositional representations. Activ-

ity in the language brain areas reliably scales with the diffi-

culty of language processing: in particular, the magnitude of

neural response during naturalistic comprehension strongly

relates to how long a given word takes to process, as

measured behaviorally (e.g., Wehbe et al., 2021; see also

Shain et al., 2020; Shain et al., 2022). Given that many non-

literal phenomena involve accessing words in unusual

senses and/or combining words in novel ways, it is perhaps

expected that processing non-literal languagewould bemore

linguistically demanding.

Another possibility, informed by recent work on inter-

network connections between the language and ToM net-

works (Paunov et al., 2019, 2022), is that non-literal interpre-

tation elicits increased crosstalk between these networks. The

recruitment of ToM areas observed in the present study di-

verges from the results of prior meta-analyses, where acti-

vation in classic ToM regions is less consistently observed,

perhaps due to the fact that fewer studies and non-literal

phenomena were incorporated. Although our results cannot

speak to the existence of a neurally separable pragmatics

substrate (see Bendtz et al., 2022), the upregulation of inter-

network connections between language and ToM may be

unique to non-literal processing; however, as mentioned

above, a rigorously controlled set of stimuli would be required

to properly address this question (Shain et al., 2022).

4.5. The need to carve non-literal processing at its joints

One important limitation of the present study is that there

was not a sufficient number of studies to evaluate differences

between phenomena (or within phenomena; e.g., novel vs

https://doi.org/10.1016/j.cortex.2023.01.013
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conventional metaphors). In an exploratory analysis, we did

not observe any systematic patterns with regard to the phe-

nomena that preferentially recruit the language vs the ToM

network (SI Table 2). In general, the field would benefit from

clear, formal hypotheses about differences in the cognitive

processes that contribute to each non-literal phenomenon.

Such hypotheses can then be tested using behavioral, brain

imaging, and computational modeling approaches.

We would like to conclude with a methodological point.

fMRI has been a critical tool in human cognitive neuroscience.

However, two disparate approaches are currently in use: i) the

traditional approach where brains are averaged voxel-wise in

the common space (Friston et al., 1999), and ii) the subject-

specific functional localization approach where regions of

interest are identified using functional ‘localizers’ (or other

precision mapping approaches, e.g., Braga et al., 2020;

DiNicola et al., 2020) and critical effects are examined therein

(Saxe et al., 2006). Until recently, comparing findings across

these approachesdand thus establishing a cumulative

research enterprisedhas proven challenging. Probabilistic

functional atlases, like the ones we used in the current study

(see also Dworetsky et al., 2021; Thirion et al., 2021), can bridge

these two approaches by providing a common framework for

functional areas/networks.
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