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Animacy semantic network supports
implicit causal inferences about illness
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This study investigates the neural basis of causal inference of illness, suggesting that
it relies on semantic networks specific to living things in the absence of a generalized
representation of causal inference across domains. The main hypothesis is
compelling, and is supported by solid methods and data analysis. Overall, the
findings make a valuable contribution to understanding the role of domain-specific
semantic networks, particularly the precuneus, in implicit causal inference about
iliness.
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Abstract

Inferring the causes of illness is a culturally universal example of causal thinking. We tested
the hypothesis that implicit causal inferences about biological processes (e.g., illness) depend
on the animacy semantic network. Participants (n=20) undergoing fMRI read two-sentence
vignettes that elicited causal inferences across sentences, either about the emergence of
illness or about the mechanical breakdown of inanimate objects, in addition to noncausal
control vignettes. All vignettes were about people and were linguistically matched. The same
participants performed localizer tasks: language, logical reasoning, and mentalizing.
Inferring illness causes, relative to all control conditions, selectively engaged a portion of the
precuneus (PC) previously implicated in the semantic representation of animates (e.g.,
people, animals). Neural responses to causal inferences about illness were adjacent to but
distinct from responses to mental state inferences, suggesting a neural mind/body distinction.
We failed to find evidence for domain-general responses to causal inference. Implicit causal
inferences are supported by content-specific semantic networks that encode causal
knowledge.

Introduction

A distinguishing feature of human cognition is our ability to reason about complex cause-effect
relationships, particularly when causes are not directly perceptible (Tooby & DeVore, 1987,
Lagnado et al., 20073 ; Rottman, Ahn, & Luhmann, 2011 & ; Muentener & Schulz, 2014 %; Sloman &
Lagnado, 2015 ; Goddu & Gopnik, 2024 2). When reading something like, Hugh sat by sneezing
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passengers on the subway. Now he has a case of COVID, we naturally infer a causal relationship
between crowded spaces and the invisible transmission of infectious disease. Here we investigate
the neurocognitive mechanisms that support such automatic inferences by studying causal
inferences about illness.

Adults have rich, culturally-specific causal knowledge about the invisible forces that bring about
illness, from pathogen transmission to divine retribution (Notaro, Gelman, & Zimmerman, 2001 (%;
Raman & Winer, 20047 ; Lynch & Medin, 2006 & ; Legare & Gelman, 2008(%; Legare et al., 2012 (3;
Legare & Shtulman, 2017®). In many societies, designated ‘healers’ become experts in diagnosing
and treating disease (Foster, 1976 (4 ; Ackerknecht, 1982 ; Norman et al., 2009 % ; Lightner,
Heckelsmiller, & Hagen, 2021 2). Non-expert adults routinely infer the causes of illness in
themselves and others (e.g., how did my friend get COVID?). Even young children think about
illness in systematic ways, reflecting their burgeoning commonsense understanding of the
biological world (Wellman & Gelman, 1992 @; Keil, 1992 (%; Inagaki & Hatano, 2006 (). Young
children attribute illness to contaminated food, contact with a sick person, and parental
inheritance (Springer & Ruckel, 1992 (; Kalish, 1996 @, 19972 ; Keil et al., 19997 ; Notaro et al.,
2001 2; Raman & Winer, 2004 % ; Raman & Gelman, 2005 (2; Legare & Gelman, 2008 (3; Legare,
Wellman, & Gelman, 2009 @ ; Dejesus, Venkatesh, & Kinzler, 2021 ).

IIness affects living things (e.g., people and animals) rather than inanimate objects (e.g., rocks,
machines, houses). Thinking about living things (animates) as opposed to non-living things
(inanimate objects/places) recruits partially distinct neural systems (e.g., Warrington & Shallice,
1984 ; Hillis & Caramazza, 1991 % ; Caramazza & Shelton, 1998 % ; Farah & Rabinowitz, 2003 ().
The precuneus (PC) is part of the ‘animacy’ semantic network and responds preferentially to living
things (i.e., people and animals), whether presented as images or words (Devlin et al., 2002 2;
Fairhall & Caramazza, 2013a %, 2013b 3; Fairhall et al., 2014 Z; Peer et al., 20152 ; Wang et al.,
2016 3; Silson et al., 2019 ; Rabini, Ubaldi, & Fairhall, 2021 ; Deen & Freiwald, 2022 (7 ; Aglinskas
& Fairhall, 2023 ; Hauptman, Elli, et al., 2025 2). By contrast, parts of the visual system (e.g.,

the PC represents causal knowledge relevant to animates and tested the prediction that it would be
activated during implicit causal inferences about illness, which rely on such knowledge
(preregistration: https://osf.io/6pnqg 2).

We also compared neural responses to causal inferences about the body (i.e., illness) and

inferences about the mind (i.e., mental states). Both types of inferences are about animate entities,
and some developmental work suggests that children use the same set of causal principles to think
about bodies and minds (Carey, 1985, 1988 (). Other evidence suggests that by early childhood,

1991 Z; Callanan & Oakes, 1992 3 ; Wellman & Gelman, 1992 % ; Inagaki & Hatano, 1993 % ; 2004 3;
Keil, 1994 2 ; Hickling & Wellman, 2001 2 ; Medin et al., 2010 ). For instance, preschoolers are
more likely to view illness as a consequence of biological causes, such as contagion, rather than
psychological causes, such as malicious intent (Springer & Ruckel, 1992 (2 ; Raman & Winer, 2004 (2;
see also Legare & Gelman, 2008 ). The neural relationship between inferences about bodies and
minds has not been fully described. The ‘mentalizing network’, including the PC, is engaged when
people reason about agents’ beliefs (Saxe & Kanwisher, 2003 (2 ; Saxe et al., 2006 (@ ; Saxe & Powell,
2006 @ ; Dodell-Feder et al., 2011 2; Dufour et al., 2013 ). We localized this network in individual
participants and measured its neuroanatomical relationship to the network activated by illness
inferences.

An alternative hypothesis is that domain-general neural mechanisms, separate from semantic
networks, support causal inferences across domains. Children and adults make causal inferences
across a wide range of domains and use similar cognitive principles (e.g., ‘screening off’) when
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doing so (e.g., Saxe & Carey, 20067 ; Tenenbaum et al., 2007 2; Carey, 20117 ; Cheng & Novick,
1992 & ; Waldmann & Holyoak, 1992 (2 ; Pearl, 2000 2; Gopnik et al., 2001 2; Steyvers et al., 2003 2 ;
Gopnik et al., 2004 (7 ; Schulz & Gopnik, 2004 & ; Rehder & Burnett, 2005 ; Lagnado et al., 2007 3 ;
Rottman & Hastie, 2014 % ; Davis & Rehder, 2020 (2). Prior neuroscience work has hypothesized
that the frontotemporal language network may support a broad range of causal inferences during
comprehension (Kuperberg et al., 2006 (2; Mason & Just, 2011 (3; Prat et al., 2011 & ; see also
Spelke, 2003 (@; 2022 (3; Pinker, 2003 (3). Alternatively, causal inference could depend on
frontoparietal mechanisms that also support other types of reasoning, such as logical deduction
(Goldvarg & Johnson-Laird, 2001 % ; Barbey & Patterson, 2011 % ; Khemlani et al., 20142;
Operskalski & Barbey, 2017 ). Finally, it has been suggested that causal inferences are supported
by a dedicated ‘causal engine’ in prefrontal cortex that supports all and only causal inferences
across domains (Pramod, Chomik-Morales, et al., 2023 ). We tested these alternative hypotheses
in the specific case of implicit causal inferences that unfold naturally during language
comprehension (Black & Bern, 1981 (%; Keenan et al., 1984 (2; Trabasso & Sperry, 1985 (% ; Myers et
al., 19873 ; Duffy et al., 1990 (@).

von Cramon, 2001 @ ; Satpute et al., 2005 ; Fugelsang & Dunbar, 2005 ; Kuperberg et al.,

2006 3; Fenker et al., 2010 ; Kranjec et al., 2012 @; Pramod, Chomik-Morales, et al., 2023 &). For
example, Kuperberg et al. (2006) @ asked participants to rate the causal relatedness of three-
sentence stories and observed higher responses to causally related stories in left frontotemporal
cortex. Studies of implicit causal inference find frontotemporal and frontoparietal responses
(Chow et al., 2008 @ ; Mason & Just, 20112 ; Prat et al., 2011(%). Across these prior studies, no
consistent neural signature of causal inference has emerged. Importantly, in many studies, causal
trials were more difficult, and/or linguistic variables were not matched across causal and
noncausal conditions. As a result, some of the observed effects may reflect linguistic or executive
load. In addition, almost no prior studies localized language or logical reasoning networks in
individual participants, making it is difficult to assess the involvement of these systems (e.g.,
Fedorenko et al., 2010 & ; Monti et al., 2009 (@); cf. Pramod, Chomik-Morales, et al., 2023 %). Most
prior work also did not distinguish between causal inferences about different semantic domains
known to depend on partially distinct neural networks, e.g., biological, mechanical, or mental state
inferences (cf. Mason & Just, 2011 ; Pramod, Chomik-Morales, et al., 2023 @). If such inferences
recruit partially distinct neural systems, their neural signatures might have been missed.

In the current experiment, participants to read two-sentence vignettes (e.g., “Hugh sat by sneezing
passengers on the subway. Now he has a case of COVID”). The first sentence described a potential
cause and the second sentence a potential effect. Such causally connected sentences arise
frequently in naturalistic discourse (Singer, 1994 (% ; Graesser et al., 1994 (). Participants
performed a covert task of detecting ‘magical’ catch trial vignettes that encouraged them to attend
to the meaning of the critical vignettes while reading as naturally as possible. We chose an
orthogonal foil detection task rather than an explicit causal judgment task to investigate automatic
causal inferences during reading and to unconfound such processing as much as possible from
explicit decision-making processes. Analogous foil detection paradigms have been used to study
sentence processing and word recognition (e.g., Pallier et al., 20112 ; Dehaene-Lambertz et al.,
20183@).

In the current study, causal inferences about illness were compared to two control conditions: i)
causal inferences about mechanical breakdown (e.g., “Jake dropped all of his things on the
subway. Now he has a shattered phone.”) and ii) illness-related language that was not causally
connected (e.g., “Lynn dropped all of her things on the subway. Now she has a case of COVID.”).
This combination of control conditions allowed us to test jointly for sensitivity to content domain
and causality. In other words, we tested the hypothesis that causal inferences about illness recruit
the animacy semantic network. Critically, all vignettes, including mechanical ones, described
events involving people, such that responses to causal inferences about illness in the animacy
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network could not be explained by the presence of animate agents. As a further control, we
included the number of people in each vignette as a covariate of no interest in our neural analysis.
Noncausal vignettes were constructed by shuffling causes/effects across conditions and were
therefore matched to the causal vignettes in linguistic content. A separate group of participants
rated the causal relatedness of all vignettes prior to the experiment. In addition to the main causal
inference experiment, we also localized language, logical reasoning, and mentalizing networks in
each participant. Following prior work, we predicted that neural systems that support causal
inference would exhibit increased activity during such inferences. Thus, our primary neural
prediction was that animacy-responsive PC would respond more to causal inferences about illness
compared to all other control conditions. We also used multivariate methods to investigate
differences between conditions.

Method

Open science practices
The methods and analysis of this experiment were pre-registered prior to data collection (https://
osf.io/6pnqg 2).

Participants

Twenty adults (7 women, 13 men, 25-37 years old, M = 28.7 years + 3.2 SD) participated in the
study. Participants either had or were pursuing graduate degrees (M = 8.8 years of post-secondary
education). Two additional participants were excluded from the final dataset due to excessive
head motion (> 2 mm) and an image artifact. One participant in the final dataset exhibited
excessive head motion (> 2 mm) during 1 run of the language/logic localizer task that was
excluded from analysis. All participants were screened for cognitive and neurological disabilities
(self-report). Participants gave written informed consent and were compensated $30 per hour. The
study was reviewed and approved by the Johns Hopkins Medicine Institutional Review Boards.

Causal inference experiment

Stimuli

Participants read two-sentence vignettes in 4 conditions, 2 causal and 2 noncausal (Figure 1D @).
Each vignette focused on a single agent, specified by a proper name in the initial sentence and by a
pronoun in the second sentence. The first sentence described something the agent did or
experienced and served as the potential cause. The second sentence described the potential effect
(e.g., “Kelly shared plastic toys with a sick toddler at her preschool. Now she has a case of
chickenpox®). Illness-Causal vignettes elicited inferences about biological causes of illness,
including pathogen transmission, exposure to environmental toxins, and genetic mutations (see
Supplementary Table 12 for a full list of the types of illnesses included in our stimuli).

Mechanical-Causal vignettes elicited inferences about physical causes of structural damage to
personally valuable inanimate objects (e.g., houses, jewelry). Two noncausal conditions used the
same sentences as in the Illness-Causal and Mechanical-Causal conditions but in a shuffled order:
illness cause with mechanical effect (Noncausal-Illness First) or mechanical cause with illness
effect (Noncausal-Mechanical First). Explicit causality judgments collected from a separate group
of online participants (n=26) verified that the both causal conditions Illness-Causal, Mechanical-
Causal) were more causally related than both noncausal conditions, t(25) = 36.97, p <.001. In
addition, Iliness-Causal and Mechanical-Causal items received equally high causality ratings, t(25)
=-0.64, p = .53 (see Appendix 1 for details).
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Figure 1.

Responses to illness inferences in the precuneus (PC). Panel A: Percent signal change (PSC) for each condition among the top
5% Illness-Causal > Mechanical-Causal vertices in a left PC search space (Dufour et al., 20132 ) in individual participants,
established via a leave-one-run-out analysis. Panel B: Average PSC in the critical window (marked by dotted lines in Panel A)
across participants. The horizontal line within each boxplot indicates the overall mean. Panel C: Whole-cortex results (one-
tailed) for Ilness-Causal > Mechanical-Causal and Illness-Causal > Noncausal (both versions of noncausal vignettes), corrected
for multiple comparisons (p < .05 FWER, cluster-forming threshold p < .01 uncorrected). Vertices are color coded on a scale
from p=0.01 to p=0.00001. Panel C: Example stimuli. ‘Magical’ catch trials similar in meaning and structure (e.g., “Sadie forgot
to wash her face after she ran in the heat. Now she has a cucumber nose”) enabled the use of a semantic ‘magic detection’
task.
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Iliness-Causal and Mechanical-Causal vignettes were constructed in pairs, such that each member
of a given pair shared parallel or near-parallel phrase structure. All conditions were also matched
(pairwise t-tests, all ps > 0.3, no statistical correction) on multiple linguistic variables known to
modulate neural activity in language regions (e.g., Pallier et al., 2011 2; Shain, Blank et al., 2020 @2).
These included number of characters, number of words, average number of characters per word,
average word frequency, average bigram surprisal (Google Books Ngram Viewer, https://books
.google.com/ngrams/(%), and average syntactic dependency length (Stanford Parser; de Marneffe,
MacCartney, & Manning, 2006 ). Word frequency was calculated as the negative log of a word’s
frequency in the Google corpus between the years 2017-2019. Bigram surprisal was calculated as
the negative log of the frequency of a given two-word phrase in the Google corpus divided by the
frequency of the first word of the phrase (see Appendix 22 for details). All conditions were

matched for all linguistic variables across the first sentence, second sentence, and the entire
vignette.

Procedure

We used a ‘magic detection’ task to encourage participants to process the meaning of the vignettes
without making explicit causality judgments. Participants saw ‘magical’ catch trials that closely
resembled the experimental trials but were fantastical (e.g., “Sadie forgot to wash her face after
she ran in the heat. Now she has a cucumber nose”). On each trial, participants indicated via
button press whether ‘something magical’ occurred in the vignette (Yes/No). This semantic foil
detection task encouraged participants to attend to the meaning of the critical vignettes while
reading as naturally as possible. We required participants to press a button on every trial to
ensure they were attending to the stimuli. Both sentences in a given vignette were presented
simultaneously for 7 s, one above the other, followed by a 12 s inter-trial interval. Each participant
saw 38 trials per condition (152 trials) plus 36 ‘magical’ catch trials (188 total trials) in one of two
versions, counterbalanced across participants, such that individual participants did not see the
same sentence in both causal and noncausal vignettes. The two stimulus versions had similar
meanings but different surface forms (e.g., “Luna stood by coughing travelers on the train...” vs.
“Hugh sat by sneezing passengers on the subway...”).

The experiment was divided into 6 10-minute runs containing 6-7 trials per condition per run
presented in a pseudorandom order. Vignettes from the same experimental condition repeated no
more than twice consecutively, vignettes that shared similar phrase structure never repeated
within a run, vignettes that referred to the same illness never repeated consecutively, and
vignettes from each condition, including catch trials, were equally distributed in time across the
course of the experiment.

Mentalizing localizer experiment

To test the relationship between neural responses to inferences about the body and the mind, and
to localize animacy regions, we used a localizer task to identify the mentalizing network in each
participant (Saxe & Kanwisher, 2003 ; Dodell-Feder et al., 2011 3; http://saxelab.mit.edu/use-our-
efficient-false-belief-localizer @3). In this task, participants read 10 mentalizing stories (e.g., a
protagonist has a false belief about an object’s location) and 10 physical stories (physical
representations depicting outdated scenes, e.g., a photograph showing an object that has since
been removed) before answering a true/false comprehension question. We used the mentalizing
stories from the original localizer but created new stimuli for the physical stories condition. Our
physical stories incorporated more vivid descriptions of physical interactions and did not make
any references to human agents, enabling us to use the mentalizing localizer as a localizer for
animacy. The new physical stories were also linguistically matched to the mentalizing stories to
reduce linguistic confounds (see Shain et al., 2023 @). Specifically, we matched physical and
mentalizing stories (pairwise t-tests, all ps > 0.3, no statistical correction) for number of characters,
number of words, average number of characters per word, average syntactic dependency length,
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average word frequency, and average bigram surprisal, as was done for the causal inference
vignettes. A comparison of both localizer versions in 3 pilot participants can be found in
Supplementary Figure 15&.

Trials were presented in an event-related design, with each one lasting 16 s (12 s stories +4 s
comprehension question) followed by a 12 s inter-trial interval. Participants completed 2 5-minute
runs of the task, with trial order counterbalanced across runs and participants. The mentalizing
network was identified in individual participants by contrasting mentalizing stories > physical
stories (Saxe & Kanwisher, 2003 3 ; Dodell-Feder et al., 2011 @).

Language/logic localizer experiment

To test for the presence of domain-general responses to causal inference in the language and logic
networks (e.g., Kuperberg et al., 2006 (@; Operskalski & Barbey, 2017 (%), we used an additional
localizer task. The task had three conditions: language, logic, and math. In the language condition,
participants judged whether two visually presented sentences, one in active and one in passive
voice, shared the same meaning. In the logic condition, participants judged whether two logical
statements were consistent (e.g., If either not Z or not Y then X vs. If not X then both Z and Y). In the
math condition, participants judged whether the variable X had the same value across two

and were presented in an event-related design. Participants completed 2 9-minute runs of the task,
with trial order counterbalanced across runs and participants. Following prior studies, the
language network was identified in individual participants by contrasting language > math and the
logic network by contrasting logic > language (Monti et al., 2009 %; Kanijlia et al., 20162 ; Liu et al.,
20203).

Data acquisition

Whole-brain fMRI data was acquired at the F.M. Kirby Research Center of Functional Brain
Imaging on a 3T Phillips Achieva Multix X-Series scanner. T1-weighted structural images were
collected in 150 axial slices with 1 mm isotropic voxels using the magnetization-prepared rapid
gradient-echo (MP-RAGE) sequence. T2*-weighted functional BOLD scans were collected in 36 axial
slices (2.4 2.43 mm voxels, TR = 2 s). Data were acquired in one experimental session lasting
approximately 120 minutes. All stimuli were visually presented on a rear projection screen with a
Cambridge Research Systems BOLDscreen 32 UHD LCD display (image resolution = 1920 x 1080)
using custom scripts written in PsychoPy3 (https://www.psychopy.org/ %, Peirce et al., 2019(3).
Participants viewed the screen via a front-silvered, 45° inclined mirror attached to the top of the
head coil.

fMRI data preprocessing and general linear model (GLM) analysis
Preprocessing included motion correction, high-pass filtering (128 s), mapping to the cortical
surface (Freesurfer), spatially smoothing on the surface (6 mm FWHM Gaussian kernel), and
prewhitening to remove temporal autocorrelation. Covariates of no interest included signal from
white matter, cerebral spinal fluid, and motion spikes.

For the main causal inference experiment, the GLM modeled the four main conditions (Illness-
Causal, Mechanical-Causal, Noncausal-Illness First, Noncausal-Mechanical First) and the ‘magical’
catch trials during the 7 s display of the vignettes after convolving with a canonical hemodynamic
response function and its first temporal derivative. The GLM additionally included participant
response time and number of people in each vignette as covariates of no interest. For the
mentalizing localizer experiment, a separate predictor was included for each condition
(mentalizing stories, physical stories), modeling the 16 s display of each story and corresponding
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comprehension question. For the language/logic localizer experiment, a separate predictor was
included for each of the three conditions (language, logic, math), modeling the 20 s duration of
each trial.

For each task, runs were modeled separately and combined within-subject using a fixed-effects
model (Dale, Fischl, & Sereno, 1999 (% ; Smith et al., 2004 @). Group-level random-effects analyses
were corrected for multiple comparisons across the whole cortex at p < .05 family-wise error rate
(FWER) using a nonparametric permutation test (cluster-forming threshold p < .01 uncorrected)
(Winkler et al., 2014 ; Eklund, Nichols, & Knutsson, 2016 @ ; Eklund, Knutsson, & Nichols, 2019 ).

Individual-subject fROI analysis: univariate

We defined individual-subject functional ROIs (fROIs) in the PC and temporoparietal junction (TP])
as well as in the language (frontal and temporal search spaces) and logic networks. In an
exploratory analysis, we defined individual-subject fROIs in an anterior parahippocampal region
(i.e., anterior PPA). For all analyses, percent signal change (PSC) was extracted and averaged over
the entire duration of the trial (17 s total), starting at 4 s to account for hemodynamic lag.

bilateral PC and TPJ search spaces separately in 5 of the 6 runs (top 5% of vertices, Illness-Causal >
Mechanical-Causal). We then extracted PSC for each condition compared to rest in the held-out run
(Illness-Causal, Mechanical-Causal, Noncausal-Iliness First, Noncausal-Mechanical First), averaging
the results across all iterations. We used the same approach to create mechanical inference fROIs
in bilateral anterior PPA search spaces from a previous study on place word representations
(Hauptman, Elli, et al., 2025 ). All aspects of this analysis were the same as those described above,
except that the most mechanical inference-responsive vertices (top 5%, Mechanical-Causal >
Iliness-Causal) were selected.

Mentalizing fROIs were created by selecting the most mentalizing-responsive vertices (top 5%) in
bilateral PC and TP] search spaces (Dufour et al., 2013 @) using the mentalizing stories > physical
stories contrast from the mentalizing localizer. Language fROIs were identified by selecting the
most language-responsive vertices (top 5%) in left frontal and temporal language areas (search
spaces: Fedorenko et al., 2010 @) using the language > math contrast from the language/logic
localizer. A logic-responsive fROI was identified by selecting the most logic-responsive vertices (top
5%) in a left frontoparietal network (search space: Liu et al., 2020 @) using the logic > language

contrast. In each fROI, we extracted PSC for all conditions in the causal inference experiment.

Individual-subject fROI analysis: multivariate

We performed MVPA (PyMVPA toolbox; Hanke et al., 2009(%) to test whether patterns of activity in
the PC, TPJ, language network, and logic network distinguished illness inferences from mechanical
inferences. In each participant, we identified the top 300 vertices most responsive to the
mentalizing localizer (mentalizing stories > physical stories) in bilateral PC and TP] search spaces
(Dufour et al., 2013 ). We also identified the top 300 vertices most responsive to language
(language > math) in a left language network search space (Fedorenko et al., 2010 %) and the top
300 vertices most responsive to logical reasoning (logic > language) in a left logic network search
space (Liu et al., 2020 @).

In an exploratory analysis, we performed MVPA to test whether patterns of activity in the left PC
and in the language and logic networks distinguished causal from noncausal vignettes. To avoid
statistical non-independence, we defined additional fROIs in the left PC for the purposes of this
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analysis. In each participant, we identified the top 300 vertices most responsive to the critical
conditions over rest (Illness-Causal + Mechanical-Causal + Noncausal-Illness First + Noncausal-
Mechanical First > Rest) in a left PC search space (Dufour et al., 2013 ®).

For each vertex in each participant’s fROIs, we obtained one observation per condition per run (z-
scored beta parameter estimate of the GLM). A linear support vector machine (SVM) was then
trained on data all but one of the runs and tested on the left-out run in a cross-validation
procedure. Classification accuracy was averaged across all permutations of the training/test splits.
We compared classifier performance within each fROI to chance (50%; one-tailed test).
Significance was evaluated against an empirically generated null distribution using a combined
permutation and bootstrap approach (Schreiber & Krekelberg, 2013 3; Stelzer et al., 2013 ). In
this approach, t-statistics obtained for the observed data are compared against an empirically
generated null distribution. We report the t-values obtained for the observed data and the
nonparametric p-values, where p corresponds to the proportion of the shuffled analyses that
generated a comparable or higher t-value.

The null distribution was generated using a balanced block permutation test by shuffling
condition labels within run 1000 times for each subject (Schreiber & Krekelberg, 2013). Then, a
bootstrapping procedure was used to generate an empirical null distribution for each statistical
test across participants by sampling one permuted accuracy value from each participant’s null
distribution 15,000 times (with replacement) and running each statistical test on these permuted
samples, thus generating a null distribution of 15,000 statistical values for each test (Stelzer et al.
2013 @®@).

Searchlight MVPA

We used a linear support vector machine classifier to test decoding between all pairs of causal and
noncausal conditions (i.e., Illness-Causal vs. Mechanical-Causal, Illness-Causal vs. Noncausal-
Mechanical First, Illness-Causal vs. Noncausal-Illness First, Mechanical-Causal vs. Noncausal-
Mechanical First, and Mechanical-Causal vs. Noncausal-Illness First) across the whole cortex using
a 10 mm radius spherical searchlight (according to geodesic distance, to better respect cortical
anatomy over Euclidean distance; Glasser et al., 2013). This yielded for each participant 5
classification maps indicating the classifier’s accuracy in a neighborhood surrounding every
vertex. Individual subject searchlight accuracy maps were then averaged within analysis, and the
resulting group-wise maps were thresholded using the PyYMVPA implementation of the 2-step
cluster-thresholding procedure described in Stelzer et al. (2013) 2 (Hanke et al., 2009 (%). This
procedure permutes block labels within participant to generate a null distribution within subject
(100 times) and then samples from these (10,000) to generate a group-wise null distribution (as in
the fROI analysis). The whole-brain searchlight maps are then thresholded using a combination of
vertex-wise threshold (p <.001 uncorrected) and cluster size threshold (FWER p < .05, corrected for
multiple comparisons across the entire cortical surface).

Results

Behavioral results

Accuracy on the magic detection task was at ceiling (M = 97.9% + 2.2 SD) and there were no
significant differences across the 4 main experimental conditions (Illness-Causal, Mechanical-
Causal, Noncausal-Iliness First, Noncausal-Mechanical First), F357)=2.39, p =.08. A one-way
repeated measures ANOVA evaluating response time revealed a main effect of condition, F(3 57) =
32.63, p <.001, whereby participants were faster on Illness-Causal trials (M = 4.73 + 0.81 SD)
compared to Noncausal-Illness First (M = 5.33 s + 0.85 SD) and Noncausal-Mechanical First (M =
5.27 s + 0.89 SD) trials. There were no differences in response time between the Mechanical-Causal
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condition (M = 5.15 s + 0.88 SD) and any other conditions. Performance on the localizer tasks was
similar to previously reported studies that used these paradigms (see Appendix 3 for full
behavioral results).

Inferring illness causes recruits animacy-responsive PC

We found distinctly localized neural responses to causal inferences about illness relative to both
mechanical causal inferences and noncausal vignettes. A bilateral precuneus (PC) region
previously implicated in thinking about animate entities (i.e., people and animals) responded
preferentially to causal inferences about illness over both mechanical causal inferences and
causally unrelated sentences in whole-cortex analysis (p < .05, corrected for multiple comparisons;
Figure 1C2) and in individual-subject overlap maps (Supplementary Figures 62 and 7 2). PC
responses during illness inferences overlapped with previously reported responses to people-
related concepts (Fairhall & Caramazza, 2013b (2; Supplementary Figure 2(2).

Relative to illness inferences and noncausal vignettes, inferring the causes of mechanical
breakdown in inanimate entities activated bilateral anterior parahippocampal regions (i.e.,
anterior PPA), suggesting a double dissociation between illness and mechanical inferences (Figure
4C @) (Epstein & Kanwisher, 1998 % ; Weiner et al., 2018 %). This anterior PPA region is engaged
during memory/verbal tasks about physical spaces (Baldassano et al., 20132 Fairhall et al.,

2014 Z; Silson et al., 2019 ; Steel et al., 2021 (@ ; Hausler et al., 2022 ; Hauptman, Elli, et al.,
2025@).

In individual-subject fROI analysis (leave-one-run-out), we similarly found that inferring illness
causes activated the PC more than inferring causes of mechanical breakdown (repeated measures
ANOVA, condition (Illness-Causal, Mechanical-Causal) x hemisphere (left, right): main effect of
condition, F(1,19)=19.18, p <.001, main effect of hemisphere, F(1,19)=0.3,p = .59, condition x
hemisphere interaction, Fj 19 = 27.48, p <.001; Figure 1A 2). This effect was larger in the left than
in the right PC (paired samples t-tests; left PC: t(19y = 5.36, p <.001, right PC: t(19) = 2.27, p = .04).
Ilness inferences also activated the PC more than illness-related language that was not causally
connected (repeated measures ANOVA, condition (Illness-Causal, Noncausal-Illness First) X
hemisphere (left, right): main effect of condition, Fa,19) = 4.66, p = .04, main effect of hemisphere,
F(1,19) = 2.51, p = .13, condition x hemisphere interaction, F(; 19) = 8.07, p = .01; repeated measures
ANOVA, condition (Illness-Causal, Noncausal-Mechanical First) x hemisphere (left, right): main
effect of condition, F(1,19) = 4.38, p =.05; main effect of hemisphere, Fq,19)=1.17,p =.29; condition
x hemisphere interaction, F(; 19 = 17.89, p <.001; Figure 1A(2). Both effects were significant only
in the left PC (paired samples t-tests; Illness-Causal vs. Noncausal-Iliness First, left PC: t19) = 2.77, p
=.01, right PC: to) = 1.28, p = .22; Illness-Causal vs. Noncausal-Mechanical First, left PC: taag) = 3.21,
p = .005, right PC: t(19) = 0.5, p = .62).

We also observed increased activity for illness inferences compared to mechanical inferences in
the temporoparietal junction (TP]) (leave-one-run-out individual-subject fROI analysis; repeated
measures ANOVA, condition (Illness-Causal, Mechanical-Causal) x hemisphere (left, right): main
effect of condition, F(1,19)=5.33,p = .03, main effect of hemisphere, F,19)=1.02, p = .33, condition
x hemisphere interaction, F(j 19) = 4.24, p = .05; Supplementary Figure 13(%). This effect was
significant only in the left TP] (paired samples t-tests; left TPJ: t(19y = 2.64, p = .02, right TP]: ¢19) =
1.13, p = .27). Unlike the PC, the TPJ did not show a preference for illness inferences compared to
illness-related language that was not causally connected (repeated measures ANOVA, condition
(Iliness-Causal, Noncausal-Illness First) x hemisphere (left, right): main effect of condition, F(; 19) =
0.006, p = .94, main effect of hemisphere, F(; 19y = 2.19, p = .16, condition x hemisphere interaction,
F(q,19) = 1.27, p = .27; repeated measures ANOVA, condition (Iliness-Causal, Noncausal-Mechanical
First) x hemisphere (left, right): main effect of condition, F(1,19)=0.73, p = A1; main effect of
hemisphere, F,19)=1.24,p = .28; condition x hemisphere interaction, F(1,19)=3.34, p = .08;
Supplementary Figure 13(@).
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In contrast to the animacy-responsive PC, the anterior PPA showed the opposite pattern,
responding more to mechanical inferences than illness inferences (leave-one-run-out individual-
subject fROI analysis; repeated measures ANOVA, condition (Mechanical-Causal, Illness-Causal) X
hemisphere (left, right): main effect of condition, F(1,19) = 17.93, p <.001, main effect of
hemisphere, Fq,19)= 1.33, p = .26, condition x hemisphere interaction, F1,19)=7.8,p = .01; Figure
4A (). This effect was significant only in the left anterior PPA (paired samples t-tests; left anterior
PPA: t(19) = 4, p < .001, right anterior PPA: {(;9) = 1.88, p = .08). The anterior PPA also showed a
preference for mechanical inferences compared to mechanical-related language that was not
causally connected (repeated measures ANOVA, condition (Mechanical-Causal, Noncausal-Illness
First) x hemisphere (left, right): main effect of condition, F(4 19y = 14.81, p =.001, main effect of
hemisphere, F,19)=1.81,p= .2, condition x hemisphere interaction, Fq,19)=7.35,p = .01; repeated
measures ANOVA, condition (Mechanical-Causal, Noncausal-Mechanical First) x hemisphere (left,
right): main effect of condition, F; 19y = 11.31, p = .003; main effect of hemisphere, F(; 19y = 3.34,p =
.08; condition x hemisphere interaction, F(1,19) = 4, p = .06; Figure 4A (). Similar to the PC, both
effects were larger in the left than in the right hemisphere (post-hoc paired samples t-tests; Illness-
Causal vs. Noncausal-Illness First, left anterior PPA: t(19) = 3.85, p =.001, right anterior PPA: tao) =
2.22, p = .04; Illness-Causal vs. Noncausal-Mechanical First, left anterior PPA: ta19) = 3.59, p = .002,
right anterior PPA: t(19) = 1.19, p = .25).

In summary, we found distinctly localized responses to illness and mechanical causal inferences.
Inferring illness causes preferentially recruited the animacy semantic network, particularly the
PC.

Illness inferences and mental state inferences

elicit spatially dissociable responses

Ilness inferences and mental state inferences elicited spatially dissociable responses. In whole-
cortex analysis, illness inferences recruited the PC bilaterally, with larger responses observed in
the left hemisphere (Figure 1, see also fROI analysis showing left-lateralization above). By
contrast, and in accordance with prior work (e.g., Saxe & Kanwisher, 2003(% ), mental state
inferences recruited a broader network, including not only bilateral PC, but also bilateral TP],
superior temporal sulcus (STS), and medial and superior prefrontal cortex (Supplementary Figure
13).

Within the left PC, responses to illness inferences were located ventrally to mental state inference
responses (Figure 22, Supplementary Figure 3@). The z-coordinates of individual-subject
activation peaks for illness inferences and mental state inferences were significantly different
(repeated measures ANOVA, F(1,19) = 13.52, p = .002). In addition, the size of the illness inference
effect (Illness-Causal > Mechanical-Causal) was larger in illness-responsive vertices (leave-one-run-
out individual-subject fROI analysis) than in mentalizing-responsive vertices in the left PC
(individual-subject fROI analysis; repeated measures ANOVA, Fq 19y = 24.72, p <.001,
Supplementary Figure 13@). These results suggest that illness inferences and mental state
inferences are carried out by neighboring but partially distinct subsets of the PC.

No univariate evidence for domain-general

responses to implicit causal inference

Prior neuroscience studies hypothesizing the existence of a domain-general ‘causal engine’ have
predicted that the language network and/or domain-general executive systems (e.g., the logic
network) should show elevated activity during causal inference across domains. In the current
study, neither the language nor the logic network exhibited elevated neural responses during
causal inferences relative to linguistically matched sentence pairs that were not causally
connected. Language regions in frontotemporal cortex responded more to noncausal than causal
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Figure 2.

Spatial dissociation between univariate responses to illness inferences and mental state inferences in the precuneus (PC). The
left medial surface of 6 individual participants were selected for visualization purposes. The locations of the top 10% most
responsive vertices to Illness-Causal > Mechanical-Causal in a PC search space (Dufour et al., 20132 ) are shown in red. The
locations of the top 10% most responsive vertices to mentalizing stories > physical stories (mentalizing localizer) in the same PC
search space are shown in blue. Overlapping vertices are shown in green.
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vignettes (frontal search space: repeated measures ANOVA, F(q 19) = 23.91, p <.001; temporal
search space: repeated measures ANOVA, F(; 19 = 4.31, p = .05; Figure 32, Supplementary Figure
8). The logic network likewise responded marginally more to noncausal vignettes, likely
reflecting greater difficulty associated with integrating unrelated sentences (repeated measures
ANOVA, F(1 19) = 3.88, p =.07; Figure 3(@).

In whole-cortex univariate analysis, no shared regions responded more to causal than noncausal
vignettes across domains. Two whole-cortex univariate contrasts comparing causal and noncausal
conditions (Illness-Causal > Noncausal-Mechanical First, Mechanical-Causal > Noncausal-
Mechanical First) revealed increased activity for the noncausal condition in bilateral prefrontal
cortex. The same prefrontal areas that responded more to noncausal than causal stimuli also
responded more when participants were slower to complete the task, suggesting that these
responses reflect a non-specific difficulty effect (Supplementary Figure 4%).

In summary, none of the predicted networks nor any regions across the whole cortex exhibited the
predicted domain-general causal inference pattern, i.e., larger responses to all causal than all
noncausal vignettes. These results suggest that implicit causal inferences, which draw upon a
person’s existing knowledge of relevant causes and effects, do not depend on domain-general
neural mechanisms. These results leave open the possibility that domain-general systems support
the explicit search for causal connections (see Discussion section).

Multivariate analysis

In searchlight MVPA performed across the whole cortex, illness inferences and mechanical
inferences produced spatially distinguishable neural patterns in the left PC extending dorsally into
the superior parietal lobule, as well as in left anterior PPA and lateral occipitotemporal cortex. A
whole-cortex searchlight analysis that tested whether each causal condition could be decoded
from each noncausal condition found no shared regions that exhibited significant decoding across
all causal vs. noncausal comparisons (Supplementary Figure 9(@).

In individual-subject fROI decoding analyses, illness inferences and mechanical inferences
produced spatially distinguishable neural patterns in the left PC, right PC, and left TP], as well as in
language and logic networks (see Supplementary Figure 10, Supplementary Table 22 for full
results). Note that these decoding results must be interpreted in light of the significant univariate
differences observed across conditions that are reported above. Linear classifiers are highly
sensitive to univariate differences (Coutanche, 2013 2; Kragel et al., 2012 % ; Hebart & Baker,

2018 (% ; Woolgar et al., 20142 ; Davis et al., 2014 (%; Pakravan et al., 2022 (%). Successful decoding
may be driven by univariate differences in the predicted direction (e.g., causal > noncausal) or in
the opposite direction (e.g., noncausal > causal). In particular, given that both the language and the
logic networks exhibited higher univariate responses to noncausal compared to causal vignettes,
decoding results observed in these networks may be driven by univariate differences.

Discussion

Causal knowledge is embedded in higher-order semantic networks

We find that a semantic network previously implicated in thinking about animates, particularly
the precuneus (PC), is preferentially engaged when people infer causes of illness compared to
when they infer causes of mechanical breakdown or read causally unconnected sentences
containing illness-related language. By contrast, mechanical inferences activate an anterior
parahippocampal region previously implicated in thinking about and remembering places
(Baldassano et al., 2013 (@; Fairhall et al., 2014(3; Silson et al., 20197 ; Steel et al., 2021 (@ ; Hausler
et al., 2022 (% ; Hauptman, Elli, et al., 2025). This finding points to a neural double dissociation
between biological and mechanical causal knowledge.
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Individual-subject analysis of language- and logic-responsive vertices. Panel A: percent signal change (PSC) for each condition
among the top 5% most language-responsive vertices (language > math) in a temporal language network search space
(Fedorenko et al., 2010 @2). Results from a frontal language search space (Fedorenko et al., 20102 ) can be found in
Supplementary Figure 82 . Panel B: PSC among the top 5% most logic-responsive vertices (logic > language) in a logic
network search space (Liu et al., 20202 ). Group maps for each contrast of interest (one-tailed) are corrected for multiple
comparisons (p < .05 FWER, cluster-forming threshold p < .01 uncorrected). Vertices are color coded on a scale from p=0.01 to
p=0.00001. Boxplots display average PSC in the critical window (marked by dotted lines) across participants. The horizontal
line within each boxplot indicates the overall mean.
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Responses to mechanical inferences in anterior parahippocampal regions (anterior PPA). Panel A: Percent signal change
(PSC) for each condition among the top 5% Mechanical-Causal > Iliness-Causal vertices in a left anterior PPA search space
(Hauptman, Elli, et al., 2025 ) in individual participants, established via a leave-one-run-out analysis. Panel B: Average PSC in
the critical window (marked by dotted lines in Panel A) across participants. The horizontal line within each boxplot indicates
the overall mean. Panel C: The intersection of two whole-cortex contrasts (one-tailed), Mechanical-Causal > Illness-Causal and
Mechanical-Causal > Noncausal that are corrected for multiple comparisons (p < .05 FWER, cluster-forming threshold p < .01
uncorrected). Vertices are color coded on a scale from p=0.01 to p=0.00001. Similar to PC responses to illness inferences,
anterior PPA is the only region to emerge across both mechanical inference contrasts. The average PPA location from
separate study involving perceptual place stimuli (Weiner et al., 2018 (2) is overlaid in black. The average PPA location from
separate study involving verbal place stimuli (Hauptman, Elli, et al., 20252 ) is overlaid in blue.
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Previous work has implicated the PC in the representation of animate entities, i.e., people and
animals (Fairhall & Caramazza, 2013a @, 2013b (@ ; Fairhall et al., 2014 ; Peer et al., 2015 ; Wang
et al., 2016 @; Silson et al., 2019 @ ; Rabini, Ubaldi, & Fairhall, 2021 ; Deen & Freiwald, 20222 ;
Aglinskas & Fairhall, 20232 ; Hauptman, Elli, et al., 2025 &). Here we show that the PC exhibits
sensitivity to causal inferences about biological processes specific to animates, such as illness.

These findings are consistent with our preregistered hypotheses and suggest that causal
knowledge about animate and inanimate entities is distributed across multiple distinct semantic
networks. Further, our results suggest that the animacy semantic network supports biological
causal knowledge. Future work should test whether the animacy network is sensitive to causal
information beyond illness, including about growth, birth, and death. We hypothesize that
changes in biological causal knowledge during development as well as cultural expertise in causal
reasoning about illness (e.g., medical expertise) influences activity in the animacy network (Legare
et al., 2012@; Norman et al., 2009 ().

Our findings are consistent with prior evidence from naturalistic paradigms showing that the PC is
sensitive to discourse-level processes across sentences (e.g., Hasson et al., 2008 % ; Lerner et al.,
2011 3; Lee & Chen, 2022 ). We hypothesize that PC responses observed during naturalistic
narrative comprehension are driven by causal inferences about animate agents, who are often the
focus of narratives. Likewise, PC involvement in episodic memory could be related to animacy-
related inferential processes (DiNicola, Braga, & Buckner, 20207 ; Ritchey & Cooper, 2020 ).
Future work can test this hypothesis by comparing causal inferences about animate and
inanimate entities in naturalistic contexts, such as films and verbal narratives (see Chen &
Bornstein, 2024 % for a review on causal inference in narrative comprehension).

We find that neural responses during inferences about biological and mental properties of
animates are linked yet separable. Inferring illness causes recruits neural circuits that are
adjacent to but distinct from responses to mental state inferences in the PC (Saxe & Kanwisher,
2003 (Z; Saxe et al., 2006 2). Even young children provide different causal explanations for
biological vs. psychological processes (Springer & Keil, 1991 (% ; Callanan & Oakes, 1992 2; Wellman
& Gelman, 1992 (3; Inagaki & Hatano, 1993 (%; 2004 (3 ; Keil, 1994 (2 ; Hickling & Wellman, 2001 %;
Medin et al., 20102 ; cf. Carey, 19857 ; see also Medin & Atran, 2004 &2 ). For example, when asked
why blood flows to different parts of the body, 6-year-olds endorse explanations referring to
bodily function, e.g., “because it provides energy to the body,” and not to mental states, e.g.,
“because we want it to flow” (Inagaki & Hatano, 1993 @). At the same time, animate entities have a
dual nature: they have both bodies and minds (Opfer & Gelman, 2011 ; Spelke, 2022 ). The
current findings point to the existence of distinct but related neural systems for biological and
mentalistic knowledge.

Our neuroimaging findings are consistent with evidence from developmental psychology

1992 & ; Wellman & Gelman, 1992 3; Hatano & Inagaki, 1994 (2 ; Springer & Keil, 1991 3 ; Simons &
Keil, 19952 ; Atran, 1998 % ; Keil et al., 1999 3; Coley, Solomon, & Shafto, 2002 &3; Medin & Atran,
2004 %). According to the ‘intuitive theories’ account, semantic knowledge is organized into causal
frameworks that serve as ‘grammars for causal inference’ (Tenenbaum et al., 2007 2 ; Wellman &
Gelman, 1992 &2 ; Gopnik & Meltzoff, 1997 2; Gopnik & Wellman, 2012(%; Gerstenberg &
Tenenbaum, 2017 (%; see also Boyer 1995 (2 ; Barrett, Cosmides, & Tooby, 2007 2 ; Cosmides &

Tooby, 2013 ; Bender, Beller, & Medin, 2017 3). For example, preschoolers intuit that animates

1991 @; Kalish, 1996 (@; Gutheil, Vera, & Keil, 1998 2; Raman & Gelman, 2005 ; see Inagaki &
Hatano, 2004 (% ; Opfer & Gelman, 2011 % for reviews). The present results suggest that such
knowledge is encoded in higher-order semantic brain networks. By contrast, we failed to find
sensitivity to causal inference in portions of the ventral stream previously associated with the
perception of animate agents (see Appendix 47, Supplementary Figure 8 % for details).
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Sensitivity to causal information may be a distinguishing characteristic of higher-order, amodal
semantic networks, as opposed to perceptual regions that are activated during semantic tasks (e.g.,
Martin & Chao, 2001 % ; Thompson-Schill, 2003 &2; Barsalou et al., 2003 3 ; Binder & Desai, 2011 Z;
Bi, 2021@).

No evidence for domain-general neural

responses during implicit causal inference

In the current study, participants read two sentence vignettes that either elicited causal inferences
or were not causally connected. No brain regions responded more to causal inferences across
domains compared to noncausal vignettes in this task. The language network responded more to
noncausal than causal vignettes, possibly due to greater difficulty associated with processing the
meaning of a sentence that does not follow from the prior context. Prior studies find that the
language network is specialized primarily for sentence-internal processing (Fedorenko & Varley,
2016 (%; Jacoby & Fedorenko, 2020 (% ; Blank & Fedorenko, 2020(%) and patients with agrammatic
aphasia can make causal inferences about pictorial stimuli (Varley & Siegal, 20002 ; Varley,

implicit causal inference. Rather, during language comprehension, the language system interacts
with semantic networks to enable such inferences (Simony et al., 2016 (3 ; Yeshurun et al., 2018;
Chang et al., 2022(@). Notably, in the current study, responses to causal inference in semantic
networks were stronger in the left hemisphere. The left lateralization of such responses may
enable efficient interfacing with the language system during comprehension.

We also failed to find evidence for the claim that the frontoparietal logical reasoning network, a
domain-general executive system, supports implicit causal inferences. By contrast, the
frontoparietal network responded more to noncausal than causal vignettes. Finally, we failed to
observe elevated responses to causal inference across domains anywhere in the brain in whole-
cortex analysis. A large swath of prefrontal cortex responded more to one noncausal condition
(Noncausal-Mechanical First) compared to both causal conditions. The same prefrontal regions
also exhibited increased activity when participants were slower to respond to the task. Thus, this
‘reverse causality effect’ likely reflects processing demands rather than causal inference per se. An
alternative interpretation of elevated prefrontal activity observed for one of the noncausal
conditions is that it reflects the effortful search for a causal connection between sentences when
such a connection is difficult to find. This interpretation would suggest that domain-general
executive mechanisms become engaged when causal inferences are effortful and explicit. By
contrast, semantic systems are engaged when we implicitly infer a known causal relationship.

Causal inferences are a highly varied class, and domain-general systems likely play an important
role in many causal inferences not tested in the current study. The vignettes used in the current
study stipulate illness causes, allowing participants to reason from causes to effects. By contrast,
illness reasoning performed by medical experts proceeds from effects to causes and can involve
searching for potential causes within highly complicated and interconnected causal systems
(Schmidt, Norman, & Boshuizen, 1990 ; Norman et al., 2009 ; Meder & Mayrhofer, 2017 &). The
discovery of novel causal relationships (e.g., ‘blicket detectors’; Gopnik et al., 2001 %) and the
identification of complex causes, even in the case of illness, may depend in part on domain-
general neural mechanisms. The present results suggest, however, that causal knowledge is
embedded within higher-order semantic systems, and that biological causal knowledge is
embedded with a semantic system relevant to animacy.

Supplementary Figures
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Supplementary Figure 1.

Functional localization of language, logical reasoning, and mentalizing networks (see Monti et al., 2009 (2; Fedorenko et al.,
2010 ; Dodell-Feder et al., 2011 ; Liu et al., 2020 @ ). Group maps for each contrast of interest (one-tailed) are corrected

for multiple comparisons (p < .05 FWER, cluster-forming threshold p <.01 uncorrected). Vertices are color coded on a scale

from p=0.01 to p=0.00001.
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Supplementary Figure 2.

Overlap between left precuneus (PC) responses to illness inferences in the current study and people-related stimuli in a
separate study (Fairhall & Caramazza, 2013b @ ). The average location from a separate study comparing people and place
concepts (Fairhall & Caramazza, 2013b () is overlaid in blue on the response to illness inferences observed in the current
study. The group map (one-tailed) is corrected for multiple comparisons (p < .05 FWER, cluster-forming threshold p < .01
uncorrected). Vertices are color coded on a scale from p=0.01 to p=0.00001.
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Supplementary Figure 3.

Spatial dissociation between responses to illness inferences and mental state inferences in left precuneus (PC). The left
medial surface of all participants (n=20) is shown. The locations of the top 10% most responsive vertices to Iliness-Causal >
Mechanical-Causal in a PC search space (Dufour et al., 2013 ) are shown in red. The locations of the top 10% most responsive
vertices to mentalizing stories > physical stories (mentalizing localizer) in the same PC search space are shown in blue.
Overlapping vertices are shown in green.
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Supplementary Figure 4.

Full whole-cortex univariate results. Regions whose activity scales with response time (RT) are displayed under “RT.” Frontal
RT regions are outlined in white on the lateral surface for other contrasts where frontal effects are observed. Group maps
(two-tailed) are corrected for multiple comparisons (p < .05 FWER, cluster-forming threshold p < .01 uncorrected). Vertices are
color coded on a scale from p=0.01 to p=0.00001.
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Supplementary Figure 5.

Comparison of whole-cortex results for number of people in each vignette (left) and iliness inferences (right) from the same
GLM. Group maps (two-tailed) are corrected for multiple comparisons (p < .05 FWER, cluster-forming threshold p < .01
uncorrected). Vertices are color coded on a scale from p=0.01 to p=0.00001.
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Supplementary Figure 6.

Group overlap in univariate contrasts comparing causal (Illness-Causal, Mechanical-Causal) and noncausal conditions
(Noncausal-Iliness First + Noncausal-Mechanical First) in the PC. Each vertex in a PC search space (Dufour et al., 20132 ) was
color-coded according to the proportion of participants who showed significant activation (p < .05 uncorrected) at that

location.
lliness-Causal > Noncausal (combined)
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Supplementary Figure 7.

Group overlap in univariate contrasts comparing causal (Illness-Causal, Mechanical-Causal) and noncausal conditions
(Noncausal-Iliness First + Noncausal-Mechanical First) in the PC, winner-take-all approach. Each vertex in a PC search space
(Dufour et al., 2013 2) was color-coded according to the proportion of participants who showed a preference for Iliness-
Causal > Noncausal compared to Mechanical-Causal > Noncausal (red) and vice versa (blue) at that location.
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Supplementary Figure 8.

Responses to illness inferences in the fusiform face area (FFA). Percent signal change (PSC) for each condition among the top

participants, established via a leave-one-run-out analysis. Average PSC in the critical window (marked by dotted lines in Panel

Mech-Causal >
Noncausal

95%

% of subjects

M 70%

A) across participants is displayed via boxplot. The horizontal line within each boxplot indicates the overall mean.
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Supplementary Figure 9.

Searchlight MVPA group maps. Whole-brain searchlight maps were thresholded using a vertex-wise threshold (p <.001
uncorrected) and a cluster size threshold (FWER p < .05, corrected for multiple comparisons across the entire cortical surface).
Vertices are color coded on a scale from 55-65% decoding accuracy.
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Supplementary Figure 10.

Subject dispersion data for individual-subject MVPA performed in functional ROIs. We tested whether patterns of activity
elicited during iliness inferences vs. mechanical inferences could be decoded in each fROI: left and right PC, left and right TP,
language network, logic network. In accordance with our preregistration, 2 types of fROIs were constructed using PC and TP)
search spaces: 1) top 300 most active vertices for mentalizing stories compared to physical stories in the mentalizing/animacy
localizer (Mentalizing stories > Physical stories), and 2) top 300 most active vertices for both causal conditions compared to rest
(Illness-Causal + Mechanical-Causal > Rest) Chance: 50%. Significance codes: 0 “***’ 0,001 ‘**’ 0.01 ‘*' 0.05 ‘.’ 0.1 " 1. Full
statistical results are included in Supplementary Table 22,
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Supplementary Figure 11.

Subject dispersion data for individual-subject MVPA performed in functional ROIs. 5 tests were performed in each fROI: left
PC (LPC), language network, logic network. Chance: 50%. Significance codes: 0 “***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.’ 0.1 ' 1. Full

IC-NC2 MC-NC1 MC-NC2
test

statistical results are included in Supplementary Table 32,
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Supplementary Figure 12.

Responses to causal inference in the language network. Panel A: Percent signal change (PSC) for each condition among the

PSC in the critical window (marked by dotted lines) across participants. The horizontal line within each boxplot indicates the
overall mean.
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Supplementary Figure 13.

Responses to iliness inferences in bilateral PC and TPJ. Percent signal change (PSC) for each condition among the top 5%
Illness-Causal > Mechanical-Causal vertices in bilateral PC and TP) search spaces (Dufour et al., 2013 ) in individual
participants, established via a leave-one-run-out analysis, is shown. We hypothesized that the PC and TPJ would exhibit a
preference for iliness inferences and report all data for completeness (see preregistration https.//osf.io/6pnqg ™ ). Significance
codes for Illness-Causal > Mechanical-Causal comparison (paired samples t-tests): 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 "’ 0.1 " 1.
Subject dispersion data are shown in Supplementary Figure 142
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Supplementary Figure 14.

Subject dispersion data for responses to illness inferences in bilateral PC and TP) (see Supplementary Figure 132). We
hypothesized that the PC and TPJ would exhibit a preference for iliness inferences and report all data for completeness (see
preregistration https://osf.io/6pnqg 2 ). Boxplots display average PSC in the critical window (5-21 s) across participants. The
horizontal line within each boxplot indicates the overall mean.
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Supplementary Figure 15.

Comparison of mentalizing localizers used in previous work and in the current study, in 3 pilot participants. The mentalizing
localizer in the current study used the same mentalizing stories as in previous work (Dodell-Feder et al., 2011 ) but
contained new physical stories that included more vivid physical description and did not refer to animate agents. Individual-
subject maps are shown at p <.01 uncorrected.
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Supplementary Materials

Appendix 1: Online experiment protocol.

Prior to the fMRI experiment, we collected explicit causality judgments from a separate group of
online participants (n=30). Each online participant read all vignettes from the causal inference
experiment (152 vignettes) in addition to 12 filler vignettes that were designed to be either
maximally causally related or unrelated (164 vignettes total), one vignette at a time. Their task was
to judge the extent to which it was possible that the event described in the first sentence of each
vignette caused the event described in the second sentence on a 4-point scale (1 = not possible; 4 =
very possible). 4 participants were excluded on the basis of inaccurate responses on the filler trials
(i.e., difference between average ratings for maximally causally related and maximally causally
unrelated vignettes <2). Among the 26 remaining participants, 12 read vignettes from Version A
and 14 read vignettes from Version B of the experiment. To eliminate erroneous responses, we
first excluded trials with RTs 2.5 SD outside their respective condition means within participants
and then excluded trials with outlier RTs (more than 1.5 IQR below Q1 or more than 1.5 IQR above
Q3) across participants (approximately 5% of all trials excluded in total). We found that both
causal conditions (Illness-Causal, Mechanical-Causal) were more causally connected than both
noncausal conditions, £(25) = 36.97, p <.001 (causal: M = 3.51 + 0.78 SD, noncausal: M = 1.10 + 0.45
SD). In addition, Illness-Causal and Mechanical-Causal items received equally high causality
ratings, t(25) = -0.64, p = .53 (Illness-Causal: M = 3.49 + 0.77 SD, Mechanical-Causal: M = 3.53 + 0.79
SD).

Appendix 2: Details on measuring linguistic variables.

All conditions were matched (pairwise t-tests, all ps > 0.3, no statistical correction) on multiple
Devauchelle, & Dehaene, 2011 @ ; Shain, Blank et al., 2020). These included numberof
characters, number of words, average number of characters per word, average word frequency,
average bigram surprisal (Google Books Ngram Viewer, https://books.google.com/ngrams/%), and
average syntactic dependency length (Stanford Parser; de Marneffe, MacCartney, & Manning,

participle adjectives parsed as verbs) were corrected by hand. Word frequency was calculated as
the negative log of a word’s occurrence rate in the Google corpus between the years 2017-2019.
Bigram surprisal was calculated as the negative log of the frequency of a given two-word phrase in
the Google corpus divided by the frequency of the first word of the phrase.

This calculation uses a log base of 2 in order to express surprisal in terms of “bits” that the first
word provides in the context of the phrase. We used bigram surprisal as our surprisal measure to
maximize the number of n-grams that had an entry in the corpus. Even so, 64 out of the 1515 total
bigrams (4%) did not have an entry in the corpus and were therefore assigned the highest
surprisal value among the rest of the bigrams (see Willems et al., 2016 ().
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Illness type Number of trials
acne 2
allergies

anemia

asthma

blood cancer

brain cancer

breast cancer
cancer (unspecified)
chickenpox

cold

COVID

epilepsy

flu

food poisoning

GI inflammation
GI virus

heart disease

high blood pressure
HIV-AIDS

liver disease

lung cancer

lung disease
malaria

pneumonia

skin cancer

throat cancer

Type 2 diabetes
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Supplementary Table 1

Iliness types present in the stimulus set.
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Bonferroni

Search space  Contrast Accuracy t Permuted p adj, p

LTP]J ment_vs_phys 61.70% 2.96 0.0053 0.032
RTP]J ment_vs_phys 52.50% 0.71 0.2573 1
LPG ment_vs_phys 61.30% 3.44 0.003 0.0112
RPC ment_vs_phys 60% 2.4 0.0176 0.108
LTP] caus_vs_rest 58.30% 4.16 0.0004 0.0024
RTPJ caus_vs_rest 51.30% 0.39 0.3305 |
LPC caus_vs_rest 60.80% 2.94 0.0055 0.0336
RPC caus_vs_rest 53.70% 1.1 0.1516 1
Logic logic_vs_lang 60.40% 3.46 0.0017 0.0026
Language  lang vs_math 58.80% 2.76 0.0069 0.0124

Supplementary Table 2

Results of preregistered MVPA for Illness-Causal vs. Mechanical-Causal in individual-subject functional ROIs. Each fROI was
created by selecting the top 300 vertices for each contrast (see ‘Contrast’) in each search space. Accuracy refers to classifier
performance against chance (50%) for Iliness-Causal vs. Mechanical-Causal. Permuted and Bonferroni-corrected (across fROIs)
p-values are reported. Ment_vs_phys: mentalizing stories > physical stories (mentalizing localizer). Caus_vs_rest: Iliness-Causal +

Illness-Mechanical > Rest. Logic_vs_lang: logic > language (language/logic localizer). Lang_vs_math: language > math
(language/logic localizer). Visualizations of these results are displayed in Supplementary Figure 102
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Bonferroni

Search space Test Accuracy t Permuted p adj. p

LPC ill-causal vs. mech-causal 61.30% 3.44  0.0018 0.007
LPC ill-causal vs. noncausall 51.70%  0.43  0.3345 1
LPC ill-causal vs. noncausal2 58.30% 3.45 0.0018 0.007
LPC mech-causal vs. noncausall 56.20% 1.66  0.0542 0.284
LPC mech-causal vs. noncausal2 62.50%  3.81  0.0005 0.003
Language ill-causal vs. mech-causal 58.80%  2.76  0.0097 0.093
Language ill-causal vs. noncausall 54.60% 1.5 0.083 1
Language ill-causal vs. noncausal2 55% 1.61  0.0675 0.93
Language mech-causal vs. noncausall 52.90%  0.85  0.1957 1
Language mech-causal vs. noncausal? 53.30% 1.09  0.1609 1
Logic ill-causal vs. mech-causal 60.40% 3.46  0.0029 0.0195
Logic ill-causal vs. noncausall 60.40%  3.27  0.0029 0.03
Logic ill-causal vs. noncausal2 52.90%  0.88  0.1928 1
Logic mech-causal vs. noncausall 53.80% 1.23  0.1121 1
Logic mech-causal vs. noncausal? 55.80% 197  0.0425 0.4785

Supplementary Table 3

MVPA results for all tests in select individual-subject functional ROIs. Each fROI was created by selecting the top 300 vertices
for each contrast in each search space: left PC (LPC) = top main experimental conditions > rest, language = top language > math

(language/logic localizer), logic = top logic > language (language/logic localizer). Accuracy refers to classifier performance

against chance (50%) for each test. Permuted and Bonferroni-corrected (across fROIs) p-values are reported. Visualizations of
these results are displayed in Supplementary Figure 112
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Appendix 3: Full behavioral results.

Accuracy on the magic detection task was at ceiling (M = 97.9% + 2.2 SD). There were no significant
differences across the 4 main experimental conditions (Illness-Causal, Mechanical-Causal,
Noncausal-Iliness First, Noncausal-Mechanical First), but participants were more accurate on
Iliness-Causal trials compared to ‘magical’ catch trials (F(4 76y = 2.81, p = .03; Illness-Causal: M =
98.8% + 2.2 SD; ‘magical’ catch trials: M = 96.4% + 3.8 SD).

A one-way repeated measures ANOVA evaluating response time revealed a main effect of
condition, Fy 76) = 8.17, p <.001, whereby participants were faster on Illness-Causal trials (M = 4.73
+ 0.81 SD) compared to Noncausal-Illness First (M = 5.33 s + 0.85 SD), Noncausal-Mechanical First
(M =5.27 s £ 0.89 SD) trials, and ‘magical’ catch trials (M = 5.34 s + 0.89 SD). There were no
differences in response time between Mechanical-Causal (M = 5.15 s + 0.88 SD) and any other
conditions.

Accuracy on the language/logic localizer task was significantly lower for the logic task compared to
both the language and math tasks (logic: M = 67.5% + 14.0 SD, math: M = 93.8% + 6.4 SD, language:
M =98.1% + 5.8 SD; F(3 3g) = 60.38, p <.0001). Similarly, response time was slowest on the logic task,
followed by math and then language (logic: M = 8.78 s + 1.88 SD, math: M = 6.20 s + 1.37 SD,
language: M = 5.18 s + 1.53 SD; F(y 35 = 44.28, p < .001).

Accuracy on the mentalizing localizer task was not different across the mentalizing stories and
physical stories conditions (mentalizing: 83.50% + 15.7 SD, physical: 90.50% + 12.3 SD; F(4 19) = 2.73,
p = .12). However, response time for the mentalizing stories was significantly slower (mentalizing:
3.46 s + 0.55 SD, physical: 3.11 s + 0.56 SD; F(1,19) = 16.59, p <.001).

Appendix 4: Individual-subject univariate
fROI analysis in the fusiform face area (FFA).

In an exploratory analysis, we defined individual-subject fROIs in the fusiform face area (FFA).
Ilness inference fROIs were created in left and right FFA search spaces from a previous study on
responses to images of faces in the ventral stream (Julian et al., 2012 %) using an iterated leave-
one-run-out procedure. In each participant, we identified the most illness inference-responsive
vertices in left and right FFA search spaces in 5 of the 6 runs (top 5% of vertices, Illness-Causal >
Mechanical-Causal). We then extracted PSC for each condition compared to rest in the held-out run
(Illness-Causal, Mechanical-Causal, Noncausal-Illness First, Noncausal-Mechanical First), averaging
the results across all iterations.

In contrast to the PC, the FFA did not show a preference for illness inferences compared to
mechanical inferences (leave-one-run-out individual-subject fROI analysis; repeated measures
ANOVA, condition (Illness-Causal, Mechanical-Causal) x hemisphere (left, right): main effect of
condition, F(1,19) = 0.04, p = .84, main effect of hemisphere, F(1,19) = 9:46, p =.006, condition x
hemisphere interaction, F(; 19y = 1.34, p = .26; Supplementary Figure 8 %). Additionally, the FFA
did not show a preference for illness inferences compared to noncausal vignettes, which
contained illness-related language but were not causally connected (repeated measures ANOVA,
condition (Iliness-Causal, Noncausal-Iliness First) x hemisphere (left, right): main effect of
condition, Fq 19y = 0.94, p = .34, main effect of hemisphere, F(; 19) = 4.47, p = .05, condition x
hemisphere interaction, F(; 19y = 0.06, p = .82; repeated measures ANOVA, condition (Illness-Causal,
Noncausal-Mechanical First) x hemisphere (left, right): main effect of condition, F(1,19)=0.07,p = .8;
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main effect of hemisphere, Fq,19) = 7.59, p = .01; condition x hemisphere interaction, Fq,19) = 2.72,
p =.12; Supplementary Figure 8 ). Thus, although the FFA exhibits a preference for images of
animates (e.g., Kanwisher et al., 1997 @), the current evidence suggests that this region is not
sensitive to abstract causal knowledge about animacy-specific processes (i.e., illness).
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inferences rely on content-specific semantic networks or broader, domain-general
neurocognitive mechanisms. The study explores two key hypotheses: first, that causal
inferences about illness rely on semantic networks specific to living things, such as the
'animacy network,' given that illnesses affect only animate beings; and second, that there
might be a common brain network supporting causal inferences across various domains,
including illness, mental states, and mechanical failures. By examining these hypotheses, the
authors aim to determine whether causal inferences are supported by specialized or
generalized neural systems.

The authors observed that inferring illness causes selectively engaged a portion of the
precuneus (PC) associated with the semantic representation of animate entities, such as
people and animals. They found no cortical areas that responded to causal inferences across
different domains, including illness and mechanical failures. Based on these findings, the
authors concluded that implicit causal inferences are supported by content-specific semantic
networks, rather than a domain-general neural system, indicating that the neural basis of
causal inference is closely tied to the semantic representation of the specific content involved.

Strengths:

- The inclusion of the four conditions in the design is well thought out, allowing for the
examination of the unique contribution of causal inference of illness compared to either a
different type of causal inference (mechanical) or non-causal conditions. This design also has
the potential to identify regions involved in a shared representation of inference across
general domains.

- The presence of the three localizers for language, logic, and mentalizing, along with the
selection of specific regions of interest (ROIs), such as the precuneus and anterior ventral
occipitotemporal cortex (antVOTC), is a strong feature that supports a hypothesis-driven
approach (although see below for a critical point related to the ROI selection).

- The univariate analysis pipeline is solid and well developed.
- The statistical analyses are a particularly strong aspect of the paper.
Weaknesses:

After carefully considering the authors' response, I believe that my primary concern has not
been fully addressed. My main point remains unresolved:

The authors attempt to test for the presence of a shared network by performing only the
Causal vs. Non-causal analysis. However, this approach is not sufficiently informative
because it includes all conditions mixed together and does not clarify whether both the
illness-causal and mechanical-causal conditions contribute to the observed results.

To address this limitation, I originally suggested an additional step: using as ROIs the
different regions that emerged in the Causal vs. Non-causal decoding analysis and conducting
four separate decoding analyses within these specific clusters:

(1) Illness-Causal vs. Non-causal - Illness First

(2) llness-Causal vs. Non-causal - Mechanical First

(3) Mechanical-Causal vs. Non-causal - Illness First

(4) Mechanical-Causal vs. Non-causal - Mechanical First

This approach would allow the authors to determine whether any of these ROIs can decode
both the illness-causal and mechanical-causal conditions against at least one non-causal
condition. However, the authors did not conduct these analyses, citing an independence
issue. I disagree with this reasoning because these analyses would serve to clarify their initial
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general analysis, in which multiple conditions were mixed together. As the results currently
stand, it remains unclear which specific condition is driving the effects.

My suggestion was to select the ROIs from their general analysis (Causal vs. Non-causal) and
then examine in more detail which conditions were driving these results. This is not a case of
double-dipping from my perspective, but rather a necessary step to unpack the general
findings. Moreover, using ROIs would actually reduce the number of multiple comparisons
that need to be controlled for.

If the authors believe that this approach is methodologically incorrect, then they should
instead conduct all possible analyses at the whole-brain level to examine the effects of the
specific conditions independently.

https://doi.org/10.7554/eLife.101944.2.sa3

Reviewer #2 (Public review):
Summary:

In this study, the authors test whether intuitive biological causal knowledge is embedded in
domain-specific semantic networks, primarily focusing on the precuneus as part of the
animacy semantic network. They do so tanks to an fMRI task, by comparing brain activity
elicited by participants' exposure to written situations suggesting a plausible cause of illness
with brain activity in linguistically equivalent situations suggesting a plausible cause of
mechanical failure or damage and non-causal situations. These contrasts confirm the PC as
the main "culprit" in whole-brain and fROIs univariate analyses. In turn, inferring causes of
mechanical failure engages mostly the PPA. The authors further test whether the content-
specificity has to do with inferences about animates in general, or if there are some
distinctions between reasoning about people's bodies versus mental states. To answer this
question, the authors localize the mentalizing network and study the relation between brain
activity elicited by Illness-Causal > Mech-Causal and Mentalizing > Physical stories. They
conclude that inferring about the causes of illness partially differentiates from reasoning
about people's states of mind. The authors finally test the alternative yet non-mutually
exclusive hypothesis that both types of implicit causal inferences (illness and mechanical)
depend on shared neural machinery. Good candidates are language and logic, which justifies
the use of a language/logic localizer. No evidence of commonalities across causal inferences
versus non-causal situations are found.

Strengths:

(1) This study introduces a useful paradigm and well-designed set of stimuli to test for
implicit causal inferences.

(2) Another important methodological advance is the addition of physical stories to the
original mentalizing protocol.

These tools pave the way for further investigation of domain-specific causal inference.

(3) The authors have significantly improved the manuscript, addressing previous concerns
and incorporating additional analyses that strengthen their conclusions.

Key improvements:

(1) The revised introduction makes the study's contribution more explicit and resolves initial
ambiguities regarding its scope.

(2) The rationale for focusing primarily on the precuneus is now clearer and the additional
analysis in the fusiform face area provides a valuable comparison.

(3) The revised manuscript now includes a more detailed examination of the searchlight
MVPA results, showing that illness and mechanical inferences elicit spatially distinct neural
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patterns in key regions, including the left PC, anterior PPA, and lateral occipitotemporal
cortex.

(4) The authors' justification for using an implicit inference task, arguing that explicit tasks
introduce executive function confounds, is convincing.

(5) The authors now acknowledge that while their results support a content-specific neural
basis for implicit causal inference, domain-general mechanisms may still play a role in other
contexts.

I have no major remaining concerns.

https://doi.org/10.7554/eLife.101944.2.sa2

Reviewer #3 (Public review):
Summary:

This study employed an implicit task, showing vignettes to participants while bold signal was
acquired. The aim was to capture automatic causal inferences that emerge during language
processing and comprehension. In particular, the authors compared causal inferences about
illness with two control conditions, causal inferences about mechanical failures and non-
causal phrases related to illnesses. All phrases that where employed described contexts with
people, to avoid animacy/inanimate confound in the results. The authors had a specific
hypothesis concerning the role of the precuneus (PC) being sensitive to causal inferences
about illnesses (that was preregistered).

Findings indicate that implicit causal inferences are facilitated by semantic networks
specialized for encoding causal knowledge.

Strengths:

The major strength of the study is the clever design of the stimuli (which are nicely matched
for a number of features) which can tease apart the role of the type of causal inference
(illness-causal or mechanical-causal) and the use of two localizers (logic/language and
mentalizing) to investigate the hypothesis that the language and/or logical reasoning
networks preferentially respond to causal inference regardless of the content domain being
tested (illnesses or mechanical).

I think that authors' revisions of the original manuscript have strengthened the study.
Overall, the paper provides an interesting contribution to the (rather new) field of study
concerning the neural basis of implicit causal inference.

I see two weaknesses concerning the visualization of the data (which could be improved)

(1) Measures of dispersion are now provided for the average PSC in the critical window. It
would be more appropriate to show the variance of the data also for the percentage signal
changes (PSC) figures (e.g., 1A by using shaded lines providing SE around the means or
boxplots at each timepoint).

(2) The authors could consider showing in Figure 2 the data of supplementary Figure 3. It is
not clear why the authors report in the main manuscript the results of a subsample of
participants (and only for this figure).

https://doi.org/10.7554/eLife.101944.2.sa1
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Author response:

The following is the authors’ response to the original reviews

Reviewer #1 (Public review):
Summary:

In this study, the authors aim to understand the neural basis of implicit causal inference,
specifically how people infer causes of illness. They use fMRI to explore whether these
inferences rely on content-specific semantic networks or broader, domain-general
neurocognitive mechanisms. The study explores two key hypotheses: first, that causal
inferences about illness rely on semantic networks specific to living things, such as the
‘animacy network,’ given that illnesses affect only animate beings; and second, that there
might be a common brain network supporting causal inferences across various domains,
including illness, mental states, and mechanical failures. By examining these hypotheses,
the authors aim to determine whether causal inferences are supported by specialized or
generalized neural systems.

The authors observed that inferring illness causes selectively engaged a portion of the
precuneus (PC) associated with the semantic representation of animate entities, such as
people and animals. They found no cortical areas that responded to causal inferences
across different domains, including illness and mechanical failures. Based on these
findings, the authors concluded that implicit causal inferences are supported by content-
specific semantic networks, rather than a domain-general neural system, indicating that
the neural basis of causal inference is closely tied to the semantic representation of the
specific content involved.

Strengths:

(1) The inclusion of the four conditions in the design is well thought out, allowing for the
examination of the unique contribution of causal inference of illness compared to either
a different type of causal inference (mechanical) or non-causal conditions. This design
also has the potential to identify regions involved in a shared representation of inference
across general domains.

(2) The presence of the three localizers for language, logic, and mentalizing, along with
the selection of specific regions of interest (ROISs), such as the precuneus and anterior
ventral occipitotemporal cortex (antVOTC(), is a strong feature that supports a hypothesis-
driven approach (although see below for a critical point related to the ROI selection).

(3) The univariate analysis pipeline is solid and well-developed.
(4) The statistical analyses are a particularly strong aspect of the paper.
Weaknesses:

Based on the current analyses, it is not yet possible to rule out the hypothesis that
inferring illness causes relies on neurocognitive mechanisms that support causal
inferences irrespective of their content, neither in the precuneus nor in other parts of the
brain.

(1) The authors, particularly in the multivariate analyses, do not thoroughly examine the
similarity between the two conditions (illness-causal and mechanical-causal), as they are
more focused on highlighting the differences between them. For instance, in the
searchlight MVPA analysis, an interesting decoding analysis is conducted to identify brain
regions that represent illness-causal and mechanical-causal conditions differently,
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yielding results consistent with the univariate analyses. However, to test for the presence
of a shared network, the authors only perform the Causal vs. Non-causal analysis. This
analysis is not very informative because it includes all conditions mixed together and
does not clarify whether both the illness-causal and mechanical-causal conditions
contribute to these results.

(2) To address this limitation, a useful additional step would be to use as ROIs the
different regions that emerged in the Causal vs. Non-causal decoding analysis and to
conduct four separate decoding analyses within these specific clusters:

(a) Illness-Causal vs. Non-causal - Iliness First;

(b) Illness-Causal vs. Non-causal - Mechanical First;

(c) Mechanical-Causal vs. Non-causal - Illness First;

(d) Mechanical-Causal vs. Non-causal - Mechanical First.

This approach would allow the authors to determine whether any of these ROIs can
decode both the illness-causal and mechanical-causal conditions against at least one
non-causal condition.

(3) Another possible analysis to investigate the existence of a shared network would be to
run the searchlight analysis for the mechanical-causal condition versus the two non-
causal conditions, as was done for the illness-causal versus non-causal conditions, and
then examine the conjunction between the two. Specifically, the goal would be to identify
ROIs that show significant decoding accuracy in both analyses.

The hypothesis that a neural mechanism supports causal inference across domains predicts
higher univariate responses when causal inferences occur than when they do not. This
prediction was not generated by us ad hoc but rather has been made by almost all previous
cognitive neuroscience papers on this topic (Ferstl & von Cramon, 2001; Satpute et al., 2005;
Fugelsang & Dunbar, 2005; Kuperberg et al., 2006; Fenker et al., 2010; Kranjec et al., 2012;
Pramod, Chomik-Morales, et al., 2023; Chow et al., 2008; Mason & Just, 2011; Prat et al., 2011).
Contrary to this hypothesis, we find that the precuneus (PC) is most activated for illness
inferences and most deactivated for mechanical inferences relative to rest, suggesting that
the PC does not support domain-general causal inference. To further probe the selectivity of
the PC for illness inferences, we created group overlap maps that compare PC responses to
illness inferences and mechanical inferences across participants. The PC shows a strong
preference for illness inferences and is therefore unlikely to support causal inferences
irrespective of their content (Supplementary Figures 6 and 7). We also note that, in whole-
cortex analysis, no shared regions responded more to causal inference than noncausal
vignettes across domains. Therefore, the prediction made by the ‘domain-general causal
engine’ proposal as it has been articulated in the literature is not supported in our data.

Taking a multivariate approach, the hypothesis that a neural mechanism supports causal
inference across domains also predicts that relevant regions can decode between all possible
pairs of causal vs. noncausal conditions (e.g., Illness-Causal vs. Noncausal-Illness First,
Mechanical-Causal vs. Noncausal-Illness First, etc.). The analysis described by the reviewer in
(2), in which the regions that distinguish between causal vs. noncausal conditions in
searchlight MVPA are used as ROISs to test various causal vs. noncausal contrasts, is non-
independent. Therefore, we cannot perform this analysis. In accordance with the reviewer’s
suggestions in (3), now include searchlight MVPA results for the mechanical inference
condition compared to the two noncausal conditions (Supplementary Figure 9). No regions
are shared across the searchlight analyses comparing all possible pairs of causal and
noncausal conditions, providing further evidence that there are no shared neural responses
to causal inference in our dataset.
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(4) Along the same lines, for the ROI MVPA analysis, it would be useful not only to include
the illness-causal vs. mechanical-causal decoding but also to examine the illness-causal
vs. non-causal conditions and the mechanical-causal vs. non-causal conditions.
Additionally, it would be beneficial to report these data not just in a table (where only the
mean accuracy is shown) but also using dot plots, allowing the readers to see not only
the mean values but also the accuracy for each individual subject.

We have performed these analyses and now include a table of the results as well as figures
displaying the dispersion across participants (Supplementary Tables 2 and 3, Supplementary
Figures 10 and 11). In the left PC, the illness inference condition was decoded from one of the
noncausal conditions, and the mechanical inference condition was decoded from the same
noncausal condition. The language network did not decode between any causal/noncausal
pairs. In the logic network, the illness inference condition was decoded from one of the
noncausal conditions, and the mechanical inference condition was decoded from the other
noncausal condition. Thus, no regions showed the predicted ‘domain-general’ pattern, i.e.,
significant decoding between all causal/noncausal pairs.

Importantly, the decoding results must be interpreted in light of significant univariate
differences across conditions (e.g., greater responses to illness inferences compared to
noncausal vignettes in the PC). Linear classifiers are highly sensitive to univariate differences
(Coutanche, 2013; Kragel et al., 2012; Hebart & Baker, 2018; Woolgar et al., 2014; Davis et al.,
2014; Pakravan et al., 2022).

(5) The selection of Regions of Interest (ROISs) is not entirely straightforward:

In the introduction, the authors mention that recent literature identifies the precuneus
(PC) as a region that responds preferentially to images and words related to living things
across various tasks. While this may be accurate, we can all agree that other regions
within the ventral occipital-temporal cortex also exhibit such preferences, particularly
areas like the fusiform face area, the occipital face area, and the extrastriate body area. I
believe that at least some parts of this network (e.g., the fusiform gyrus) should be
included as ROISs in this study. This inclusion would make sense, especially because a
complementary portion of the ventral stream known to prefer non-living items (i.e.,
anterior medial VOTC) has been selected as a control ROI to process information about
the mechanical-causal condition. Given the main hypothesis of the study - that causal
inferences about illness might depend on content-specific semantic representations in
the ‘animacy network' - it would be worthwhile to investigate these ROIs alongside the
precuneus, as they may also yield interesting results.

We thank the reviewer for their suggestion to test the FFA region. We think this provides an
interesting comparison to the PC and hypothesized that, in contrast to the PC, the FFA does
not encode abstract causal information about animacy-specific processes (i.e., illness). As we
mention in the Introduction, although the fusiform face area (FFA) also exhibits a preference
for animates, it does so primarily for images in sighted people (Kanwisher et al., 1997;
Kanwisher et al., 1997; Grill-Spector et al., 2004; Noppeney et al., 2006; Konkle & Caramazza,
2013; Connolly et al., 2016; Bi et al., 2016).

We did not select the FFA as a region of interest when preregistering the current study
because we did not predict it would show sensitivity to causal knowledge. In accordance with
the reviewer’s suggestions, we now include the FFA as an ROI in individual-subject univariate
analysis (Supplementary Figure 8, Appendix 4). Because we did not run a separate FFA
localizer task when collecting the data, we used FFA search spaces from a previous study
investigating responses to face images (Julian et al., 2012). We followed the same analysis
procedure that was used to investigate responses to illness inferences in the PC. Neither left
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nor right FFA exhibited a preference for illness inferences compared to mechanical
inferences or to the noncausal conditions. This result is interesting and is now briefly
discussed in the Discussion section.

(6) Visual representation of results:

In all the figures related to ROI analyses, only mean group values are reported (e.q.,
Figure 1A, Figure 3, Figure 4A, Supplementary Figure 6, Figure 7, Figure 8). To better
capture the complexity of fMRI data and provide readers with a more comprehensive
view of the results, it would be beneficial to include a dot plot for a specific time point in
each graph. This could be a fixed time point (e.g., a certain number of seconds after
stimulus presentation) or the time point showing the maximum difference between the
conditions of interest. Adding this would allow for a clearer understanding of how the
effect is distributed across the full sample, such as whether it is consistently present in
every subject or if there is greater variability across individuals.

We thank the reviewer for this suggestion. We now include scattered box plots displaying the
dispersion in average percent signal change across participants in Figures 1, 3, and 4, and
Supplementary Figures 8, 12, and 14.

(7) Task selection:

(a) To improve the clarity of the paper, it would be helpful to explain the rationale behind
the choice of the selected task, specifically addressing: (i) why an implicit inference task
was chosen instead of an explicit inference task, and (ii) why the "magic detection” task
was used, as it might shift participants' attention more towards coherence, surprise, or
unexpected elements rather than the inference process itself.

(b) Additionally, the choice to include a large number of catch trials is unusual, especially
since they are modeled as regressors of non-interest in the GLM. It would be beneficial to
provide an explanation for this decision.

We chose an orthogonal foil detection task, rather than an explicit causal judgment task, to
investigate automatic causal inferences during reading and to unconfound such processing
as much as possible from explicit decision-making processes (see Kuperberg et al., 2006 for
discussion). Analogous foil detection paradigms have been used to study sentence processing
and word recognition (Pallier et al., 2011; Dehaene-Lambertz et al., 2018). We now clarify this
in the Introduction. The “magical” element occurred both within and across sentences so that
participants could not use coherence as a cue to complete the task. Approximately 1/5 (19%)
of the trials were magical catch trials to ensure that participants remained attentive
throughout the experiment.

Reviewer #2 (Public review):
Summary:

In this study, the authors hypothesize that "causal inferences about illness depend on
content-specific semantic representations in the animacy network". They test this
hypothesis in an fMRI task, by comparing brain activity elicited by participants' exposure
to written situations suggesting a plausible cause of illness with brain activity in
linguistically equivalent situations suggesting a plausible cause of mechanical failure or
damage and non-causal situations. These contrasts identify PC as the main "culprit" in a
whole-brain univariate analysis. Then the question arises of whether the content-
specificity has to do with inferences about animates in general, or if there are some
distinctions between reasoning about people's bodies versus mental states. To answer
this question, the authors localize the mentalizing network and study the relation
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between brain activity elicited by Iliness-Causal > Mech-Causal and Mentalizing >
Physical stories. They conclude that inferring about the causes of illness partially
differentiates from reasoning about people's states of mind. The authors finally test the
alternative yet non-mutually exclusive hypothesis that both types of causal inferences
(illness and mechanical) depend on shared neural machinery. Good candidates are
language and logic, which justifies the use of a language/logic localizer. No evidence of
commonalities across causal inferences versus non-causal situations is found.

Strengths:

(1) This study introduces a useful paradigm and well-designed set of stimuli to test for
implicit causal inferences.

(2) Another important methodological advance is the addition of physical stories to the
original mentalizing protocol.

(3) With these tools, or a variant of these tools, this study has the potential to pave the
way for further investigation of naive biology and causal inference.

Weaknesses:

(1) This study is missing a big-picture question. It is not clear whether the authors
investigate the neural correlates of causal reasoning or of naive biology. If the former,
the choice of an orthogonal task, making causal reasoning implicit, is questionable. If
the latter, the choice of mechanical and physical controls can be seen as reductive and
problematic.

We have modified the Introduction to clarify that the primary goal of the current study is to
test the claim that semantic networks encode causal knowledge - in this case, causal intuitive
theories of biology. Most conceptions of intuitive biology, intuitive psychology, and intuitive
physics describe them as causal frameworks (e.g., Wellman & Gelman, 1992; Simons & Keil,
1995; Keil et al., 1999; Tenenbaum, Griffiths, & Niyogi, 2007; Gopnik & Wellman, 2012;
Gerstenberg & Tenenbaum, 2017). As noted above, we chose an implicit task to investigate
automatic causal inferences during reading and to unconfound such processing as much as
possible from explicit decision-making processes. We are not sure what the reviewer means
when they say that mechanical and physical controls are reductive. This is the standard
control condition in neural and behavioral paradigms that investigate intuitive psychology
and intuitive biology (e.g., Saxe & Kanwisher, 2003; Gelman & Wellman, 1991).

(2) The rationale for focusing mostly on the precuneus is not clear and this choice could
almost be seen as a post-hoc hypothesis.

This study is preregistered (https://osf.io/6pnqg). The preregistration states that the precuneus
is a hypothesized area of interest, so this is not a post-hoc hypothesis. Our hypothesis was
informed by multiple prior studies implicating the precuneus in the semantic representation
of animates (e.g., people, animals) (Fairhall & Caramazza, 2013a, 2013b; Fairhall et al., 2014;
Peer et al,, 2015; Wang et al., 2016; Silson et al., 2019; Rabini, Ubaldi, & Fairhall, 2021; Deen &
Freiwald, 2022; Aglinskas & Fairhall, 2023; Hauptman, Elli, et al., 2025). We also conducted a
pilot experiment with separate participants prior to pre-registering the study. We now clarify
our rationale for focusing on the precuneus in the Introduction:

“Illness affects living things (e.g., people and animals) rather than inanimate objects (e.g.,
rocks, machines, houses). Thinking about living things (animates) as opposed to non-living
things (inanimate objects/places) recruits partially distinct neural systems (e.g., Warrington &
Shallice, 1984; Hillis & Caramazza, 1991; Caramazza & Shelton, 1998; Farah & Rabinowitz,
2003). The precuneus (PC) is part of the ‘animacy’ semantic network and responds

Miriam Hauptman et al., 2025 eLife. https://doi.org/10.7554/eLife.101944.2 55 of 62


https://doi.org/10.7554/eLife.101944.2
https://osf.io/6pnqg

7 eLife

preferentially to living things (i.e., people and animals), whether presented as images or
words (Devlin et al., 2002; Fairhall & Caramazza, 2013a, 2013b; Fairhall et al., 2014; Peer et al.,
2015; Wang et al., 2016; Silson et al., 2019; Rabini, Ubaldi, & Fairhall, 2021; Deen & Freiwald,
2022; Aglinskas & Fairhall, 2023; Hauptman, Elli, et al., 2025). By contrast, parts of the visual
system (e.g., fusiform face area) that respond preferentially to animates do so primarily for
images (Kanwisher et al., 1997; Grill-Spector et al., 2004; Noppeney et al., 2006; Mahon et al.,
2009; Konkle & Caramazza, 2013; Connolly et al., 2016; see Bi et al., 2016 for a review). We
hypothesized that the PC represents causal knowledge relevant to animates and tested the
prediction that it would be activated during implicit causal inferences about illness, which
rely on such knowledge (preregistration: https://osf.io/6pngg).”

(3) The choice of an orthogonal 'magic detection’ task has three problematic
consequences in this study:

(a) It differs in nature from the 'mentalizing' task that consists of evaluating a character's
beliefs explicitly from the corresponding story, which complicates the study of the
relation between both tasks. While the authors do not compare both tasks directly, it is
unclear to what extent this intrinsic difference between implicit versus explicit judgments
of people's body versus mental states could influence the results.

(b) The extent to which the failure to find shared neural machinery between both types of
inferences (illness and mechanical) can be attributed to the implicit character of the task
is not clear.

(c) The introduction of a category of non-interest that contains only 36 trials compared to
38 trials for all four categories of interest creates a design imbalance.

We disagree with the reviewer’s argument that our use of an implicit “magic detection” task
is problematic. Indeed, we think it is one of the advances of the current study over prior
work.

a) Prior work has shown that implicit mentalizing tasks (e.g., naturalistic movie watching)
engages the theory of mind network, suggesting that the implicit/explicit nature of the task
does not drive the activation of this network (Jacoby et al., 2016; Richardson et al., 2018). With
these data in mind, it is unlikely that the implicit/explicit nature of the causal inference and
theory of mind tasks in the present experiment can explain observed differences between
them.

b) Explicit causal inferences introduce a collection of executive processes that potentially
confound the results and make it difficult to know whether neural signatures are related to
causal inference per se. The current study focuses on the neural basis of implicit causal
inference, a type of inference that is made routinely during language comprehension. We do
not claim to find neural signatures of all causal inferences, we do not think any study could
claim to do so because causal inferences are a highly varied class.

¢) Our findings do not exclude the possibility that content-invariant responses are elicited
during explicit causality judgments. We clarify this point in the Results (e.g., “These results
leave open the possibility that domain-general systems support the explicit search for causal
connections”) and Discussion (e.g., “The discovery of novel causal relationships (e.g., ‘blicket
detectors’; Gopnik et al., 2001) and the identification of complex causes, even in the case of
illness, may depend in part on domain-general neural mechanisms”).

d) Because the magic trials are excluded from our analyses, it is unclear how the imbalance
in the number of magic trials could influence the results and our interpretation of them. We
note that the number of catch trials in standard target detection paradigms are sometimes
much lower than the number of target trials in each condition (e.g., Pallier et al., 2011).
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(4) Another imbalance is present in the design of this study: the number of trials per
category is not the same in each run of the main task. This imbalance does not seem to
be accounted for in the 1st-level GLM and renders a bit problematic the subsequent use
of MVPA.

Each condition is shown either 6 or 7 times per run (maximum difference of 1 trial between
conditions), and the number of trials per condition is equal across the whole experiment:
each condition is shown 7 times in two of the runs and 6 times four of the runs. This minor
design imbalance is typical of fMRI experiments and should not impact our interpretations of
the data, particularly because we average responses from each condition within a run before
submitting them to MVPA.

(5) The main claim of the authors, encapsulated by the title of the present manuscript, is
not tested directly. While the authors included in their protocol independent localizers for
mentalizing, language, and logic, they did not include an independent localizer for
"animacy". As such, they cannot provide a within-subject evaluation of their claim, which
is entirely based on the presence of a partial overlap in PC (which is also involved in a
wide range of tasks) with previous results on animacy.

We respectfully disagree with this assertion. Our primary analysis uses a within-subject
leave-one-run-out approach. This approach allows us to use part of the data itself to localize
animacy-relevant causal responses in the PC without engaging in ‘double-dipping’ or
statistical non-independence (Vul & Kanwisher, 2011). We also use the mentalizing network
localizer as a partial localizer for animacy. This is because the control condition (physical
reasoning) does not include references to people or any animate agents (Supplementary
Figures 1 and 15). We now clarify this point in Methods section of the paper (see below).

From the Methods: “To test the relationship between neural responses to inferences about the
body and the mind, and to localize animacy regions, we used a localizer task to identify the
mentalizing network in each participant (Saxe & Kanwisher, 2003; Dodell-Feder et al., 2011;
http://saxelab.mit.edu/use-our-efficient-false-belief-localizer)...Our physical stories
incorporated more vivid descriptions of physical interactions and did not make any
references to human agents, enabling us to use the mentalizing localizer as a localizer for
animacy.”

Reviewer #3 (Public review):
Summary:

This study employed an implicit task, showing vignettes to participants while a bold
signal was acquired. The aim was to capture automatic causal inferences that emerge
during language processing and comprehension. In particular, the authors compared
causal inferences about illness with two control conditions, causal inferences about
mechanical failures and non-causal phrases related to illnesses. All phrases that were
employed described contexts with people, to avoid animacy/inanimate confound in the
results. The authors had a specific hypothesis concerning the role of the precuneus (PC)
in being sensitive to causal inferences about illnesses.

These findings indicate that implicit causal inferences are facilitated by semantic
networks specialized for encoding causal knowledge.

Strengths:

The major strength of the study is the clever design of the stimuli (which are nicely
matched for a number of features) which can tease apart the role of the type of causal
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inference (illness-causal or mechanical-causal) and the use of two localizers
(logic/language and mentalizing) to investigate the hypothesis that the language and/or
logical reasoning networks preferentially respond to causal inference regardless of the
content domain being tested (illnesses or mechanical).

Weaknesses:
I have identified the following main weaknesses:

(1) Precuneus (PC) and Temporo-Parietal junction (TPJ) show very similar patterns of
results, and the manuscript is mostly focused on PC (also the abstract). To what extent
does the fact that PC and TP/ show similar trends affect the inferences we can derive
from the results of the paper? I wonder whether additional analyses (connectivity?) would
help provide information about this network.

We thank the reviewer for this suggestion. While the PC shows the most robust univariate
preference for illness inferences compared to both mechanical inferences and noncausal
vignettes, the TP] also shows a preference for illness inferences compared to mechanical
inferences in individual-subject fROI analysis. However, as we mention in the Results section,
the TPJ does not show a preference for illness inferences compared to noncausal vignettes,
suggesting that the TP] is selective for animacy but may not be as sensitive to causal
knowledge about animacy-specific processes. When describing our results, we refer to the
‘animacy network’ (i.e., PC and TPJ]) but also highlight that the PC exhibited the most robust
responses to illness inferences (from the Results: “Inferring illness causes preferentially
recruited the animacy semantic network, particularly the PC”; from the Discussion: “We find
that a semantic network previously implicated in thinking about animates, particularly the
precuneus (PC), is preferentially engaged when people infer causes of illness...”). We did not
collect resting state data that would enable a connectivity analysis, as the reviewer suggests.
This is an interesting direction for future work.

(2) Results are mainly supported by an univariate ROI approach, and the MVPA ROI
approach is performed on a subregion of one of the ROI regions (left precuneus). Results
could then have a limited impact on our understanding of brain functioning.

The original and current versions of the paper include results from multiple multivariate
analyses, including whole-cortex searchlight MVPA and individual-subject fROI MVPA
performed in multiple search spaces (see Supplementary Figures 10 and 11, Supplementary
Tables 2 and 3).

We note that our preregistered predictions focused primarily on univariate differences. This
is because the current study investigates neural responses to inferences, and univariate
increases in activity is thought to reflect the processing of such inferences. We use
multivariate analyses to complement our primary univariate analyses. However, given that
we observe significant univariate effects and that multivariate analyses are heavily
influenced by significant univariate effects (Coutanche, 2013; Kragel et al., 2012; Hebart &
Baker, 2018; Woolgar et al., 2014; Davis et al., 2014; Pakravan et al., 2022), our univariate
results constitute the main findings of the paper.

(3) In all figures: there are no measures of dispersion of the data across participants. The
reader can only see aggregated (mean) datoa. E.g., percentage signal changes (PSC) do
not report measures of dispersion of the data, nor do we have bold maps showing the
overlap of the response across participants. Only in Figure 2, we see the data of 6
selected participants out of 20.
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We thank the reviewer for this suggestion. We now include graphs depicting the dispersion of
the data across participants in the following figures: Figures 1, 3, and 4, and Supplementary
Figures 8, 12, and 14. We have also created 2 figures that display the overlap of univariate
responses across participants (Supplementary Figures 6 and 7). These figures show that there
is high overlap across participants in PC responses to illness inferences but not mechanical
inferences. In addition, all participants’ results from the analysis depicted in Figure 2 are
included in Supplementary Figure 3.

| (4) Sometimes acronyms are defined in the text after they appear for the first time.
We thank the reviewer for pointing this out. We now define all acronyms before using them.

Recommendations for the authors:
Reviewer #1 (Recommendations for the authors):

(1) I was unable to access the pre-registration on OSF because special permission is
required.

We apologize for this technical error. The preregistration is now publicly available: https://osf
.lo/6pnqg.

(2) The length of the MRI session is quite long (around 2 hours). It is generally
discouraged to have such extended data acquisition periods, as this can affect the
stability and cleanliness of the data. Did you observe any effects of fatigue or attention
decline in your data?

The session was 2 hours long including 1-2 10-minute breaks. Without breaks, the scan would
be approximately 1.5 hours. This is a standard length for MRI experiments. The main
experiment (causal inference task) was always conducted first and lasted approximately 1
hour. Accuracy did not decrease across the 6 runs of this experiment (repeated measures
ANOVA, F(5 114) = 1.35, p = .25).

(3) The last sentence of the results states: "Although MVPA searchlight analysis identified
several areas where patterns of activity distinguished between causal and non-causal
vignettes, all of these regions showed a preference for non-causal vignettes in univariate
analysis (Supplementary Figure 5)." This statement is not entirely accurate. As I
previously pointed out, the MVPA searchlight analysis is not very informative and is
difficult to interpret. However, as previously suggested, there are additional steps that
could be taken to better understand and interpret these results. It is incorrect to
conclude that because the brain regions identified in the MVPA analyses show a
preference for non-causal vignettes in univariate analyses, the multivariate results lack
value. While univariate analyses may show a preference for a specific condition,
multivariate analyses can reveal more fine-grained representations of multiple
conditions. For a notable example, consider the fusiform face area (FFA) that shows a
clear preference for faces at the univariate level but can significantly decode other
categories at the multivariate level, even when faces are not included in the analysis.

The decoding analysis that the reviewer is suggesting for the current study would be
analogous to identifying univariate differences between faces and places in the FFA and then
decoding between faces and places and claiming that the FFA represents places because the
decoding is significant. The decoding analyses enabled by our design are not equivalent to
decoding within a condition (e.g., among face identities, among types of illness inferences), as
the reviewer suggests above. It is not that such multivariate analyses “lack value” but that

Miriam Hauptman et al., 2025 eLife. https://doi.org/10.7554/eLife.101944.2 59 of 62


https://doi.org/10.7554/eLife.101944.2
https://osf.io/6pnqg

7 eLife

they recapitulate established univariate differences. Multivariate analyses are useful for
revealing more fine-grained representations when i) significant univariate differences are
not observed, or ii) when it is possible to decode among categories within a condition (e.g.,
among face identities, among types of illness inferences). We are currently collecting data
that will enable us to perform within-condition decoding analyses in future work, but the
design of the current study does not allow for such a comparison.

We note that the original quotation from the manuscript has been removed because it is no
longer accurate. When including participant response time as a covariate of no interest in the
GLM, no regions are shared across the 4 searchlight analyses comparing causal and
noncausal conditions, suggesting that there are no shared neural responses to causal
inference in our dataset.

Reviewer #2 (Recommendations for the authors):

(1) Moderating the strength of some claims made to justify the main hypothesis (e.g.,
"people but not machines transmit diseases to each other through physical contact”).

We changed this wording so that it now reads: “Illness affects living things (e.g., people and
animals) rather than inanimate objects (e.g., rocks, machines, houses).” (Introduction)

(2) Expanding the paragraph introducing the sub-question about inferring people's
"body states" vs "mental states". In addition, given the order in which the hypotheses are
introduced, and the results are presented, I would suggest switching the order of
presentation of both localizers in the methods section and adding a quick reminder of
the hypotheses that justify using these localizers.

We thank the reviewer for these suggestions. In accordance their suggestions, we have
expanded the paragraph Introduction that introduces the “body states” vs. “mental states”
question (see below). We have also switched the order of the localizer descriptions in the
Methods section and added a sentence at the start of each section describing the relevant
hypotheses (see below).

From the Introduction: “We also compared neural responses to causal inferences about the
body (i.e., illness) and inferences about the mind (i.e., mental states). Both types of inferences
are about animate entities, and some developmental work suggests that children use the
same set of causal principles to think about bodies and minds (Carey, 1985, 1988). Other
evidence suggests that by early childhood, young children have distinct causal knowledge
about the body and the mind (Springer & Keil, 1991; Callanan & Oakes, 1992; Wellman &
Gelman, 1992; Inagaki & Hatano, 1993; 2004; Keil, 1994; Hickling & Wellman, 2001; Medin et
al., 2010). For instance, preschoolers are more likely to view illness as a consequence of
biological causes, such as contagion, rather than psychological causes, such as malicious
intent (Springer & Ruckel, 1992; Raman & Winer, 2004; see also Legare & Gelman, 2008). The
neural relationship between inferences about bodies and minds has not been fully described.
The ‘mentalizing network’, including the PC, is engaged when people reason about agents’
beliefs (Saxe & Kanwisher, 2003; Saxe et al., 2006; Saxe & Powell, 2006; Dodell-Feder et al.,
2011; Dufour et al., 2013). We localized this network in individual participants and measured
its neuroanatomical relationship to the network activated by illness inferences.”

From the Methods, localizer descriptions: “To test the relationship between neural responses
to inferences about the body and the mind, and to localize animacy regions, we used a
localizer task to identify the mentalizing network in each participant... To test for the
presence of domain-general responses to causal inference in the language and logic networks
(e.g., Kuperberg et al., 2006; Operskalski & Barbey, 2017), we used an additional localizer task
to identify both networks in each participant.”
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(3) Adding a quick analysis of lateralization to support the corresponding claim of left
lateralization of responses to causal inferences.

In accordance with the reviewer’s suggestion, we now include hemisphere as a factor in all
ANOVAs comparing univariate responses across conditions.

From the Results: “In individual-subject fROI analysis (leave-one-run-out), we similarly found
that inferring illness causes activated the PC more than inferring causes of mechanical
breakdown (repeated measures ANOVA, condition (Illness-Causal, Mechanical-Causal) X
hemisphere (left, right): main effect of condition, Fr,19) = 19.18, p <.001, main effect of
hemisphere, F1,199=0.3,p = .59, condition x hemisphere interaction, F(1,19)= 27.48, p <.001;
Figure 1A). This effect was larger in the left than in the right PC (paired samples t-tests; left
PC: t19) = 5.36, p <.001, right PC: ¢(;9) = 2.27, p = .04)...In contrast to the animacy-responsive
PC, the anterior PPA showed the opposite pattern, responding more to mechanical inferences
than illness inferences (leave-one-run-out individual-subject fROI analysis; repeated
measures ANOVA, condition (Mechanical-Causal, Illness-Causal) x hemisphere (left, right):
main effect of condition, F; 79) = 17.93, p <.001, main effect of hemisphere, F; 19)=1.33,p =
.26, condition x hemisphere interaction, F1,19)= 7.8, p = .01; Figure 4A). This effect was
significant only in the left anterior PPA (paired samples t-tests; left anterior PPA: t;;9) = 4, p <
.001, right anterior PPA: tr19)=1.88,p =.08).”

| (4) Making public and accessible the pre-registration OSF link.

We apologize for this technical error. The preregistration is now publicly available: https://osf
.1o/6pnqg.

Reviewer #3 (Recommendations for the authors):

In all figures: there are no measures of dispersion of the data across participants. The
reader can only see aggregated (mean) datoa. E.g., percentage signal changes (PSC) do
not report measures of dispersion of the data, nor do we have bold maps showing the
overlap of the response across participants. Only in Figure 2, we see the data of 6
selected participants out of 20.

We thank the reviewer for this suggestion. We now include graphs depicting the dispersion of
the data across participants in the following figures: Figures 1, 3, and 4, and Supplementary
Figures 8, 12, and 14. We have also created 2 figures that display the overlap of univariate
responses across participants (Supplementary Figures 6 and 7). In addition, all participants’
results from the analysis depicted in Figure 2 are included in Supplementary Figure 3.

Minor

(1) Figure 2: Spatial dissociation between responses to illness inferences and mental state
inferences in the precuneus (PC). If the analysis is the result of the MVPA, the figure
should report the fact that only the left precuneus was analyzed.

Figure 2 depicts the spatial dissociation in univariate responses to illness inferences and
mental state inferences. We now clarify this in the figure legend.

(2) VOTC and PSC acronyms are defined in the text after they appear for the first time. TP|
is never defined.

We thank the reviewer for pointing this out. We now define all acronyms before using them.
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