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Abstract 
Our remarkable ability to infer complex cause-effect 
relationships is thought to distinguish humans from all other 
species. Despite that causal inferencing pervades human 
cognition, it remains unclear whether this fundamental 
cognitive ability is supported by a unified, domain-general 
mechanism or multiple domain-specific mechanisms. Both the 
language and logical reasoning systems have been described as 
possible unified substrates of causal inferencing. The current 
study uses neuroimaging to offer insight into this debate. We 
specifically focus on the culturally universal and highly 
motivationally relevant case of inferring illness causes. 
Participants read causal and noncausal vignettes about illness 
and mechanical failure while undergoing fMRI. We find that 
inferring the causes of illness selectively activates the brain’s 
‘animacy network,’ particularly the precuneus. By contrast, a 
domain-general (i.e., ‘content-invariant’) preference for causal 
inferencing did not emerge, including in the language and 
logical reasoning networks. Together, this evidence suggests 
that domain-specific mechanisms enable causal inferencing. 

Keywords: cognitive neuroscience; causal reasoning; 
language understanding; concepts and categories; fMRI 

Introduction 
A distinguishing feature of human cognition is our ability to 
reason about complex cause-effect relationships, particularly 
when causes are hidden (Tooby & DeVore, 1987, Lagnado et 
al., 2007; Rottman, Ahn, & Luhmann, 2011; Muentener & 
Schulz, 2014; Sloman & Lagnado, 2015; Goddu & Gopnik, 
2024). Reasoning about the causes of illness provides a 
classic example (Keil et al., 1999; Waldmann, 2000; Meder 
& Mayrhofer, 2017; Legare & Shtulman, 2018). When 
reading something like, Lucy attended a busy conference last 
week. Now she has COVID, we naturally infer a causal 
relationship between crowded spaces and the (invisible) 
transmission of infectious disease. What cognitive and neural 
mechanisms support this kind of inferencing? A key point of 
debate concerns whether causal reasoning is carried out by a 
single, unified mechanism that operates regardless of domain 
(e.g., biology, physics, social cognition) or whether it is 
embedded separately within different domain-specific 
cognitive systems (Boyer, 1995; Gopnik et al., 2004; 
Tenenbaum, Griffiths, & Niyogi, 2007; Carey, 2011; Bender, 
Beller, & Medin, 2017).  

The most extreme interpretation of the domain-general 
account reduces causal reasoning to general learning 
processes responsible for tracking covariation in events (e.g., 

Hume, 1739/1978; Kelley, 1973; Cheng & Novick, 1992; cf. 
Ahn et al., 1995; Lagnado et al., 2007). Such proposals view 
causal reasoning as a purely domain-general process. 

A more recent set of theories posit the existence of a 
dedicated cause representation that is agnostic to semantic 
content, but in some cases interacts extensively with domain-
specific knowledge (e.g., Gopnik et al., 2004; Tenenbaum et 
al., 2007; Carey, 2011). These ‘dedicated causal engine’ 
accounts are inspired by two main lines of evidence. First, 
causal learning in children and adults can be captured by 
content-invariant computational models, such as Bayes nets 
(Pearl, 2000; Gopnik et al., 2001; Schulz & Gopnik, 2004; 
Rehder & Burnett, 2005). Second, causal inferences often 
transcend domain-specific systems, such as when we infer 
that an agent was the cause of a flying inanimate object (Saxe, 
Tenenbaum, & Carey, 2005; Saxe, Tzelnic, & Carey, 2007; 
Muentener & Carey, 2010; Carey, 2011; see also Legare & 
Shtulman, 2018). These findings have inspired the related 
claims that abstract ‘causal maps’ guide causal learning 
across domains (Gopnik et al., 2004; Gopnik & Wellman, 
2012), and that a unified representation of causality is situated 
within a ‘central workspace,’ where it interfaces with 
perceptual input (e.g., Michotte, 1963) and domain-specific 
conceptual knowledge (Saxe & Carey, 2006; Carey, 2011). 

 An alternative, but not mutually exclusive, possibility is 
that causal representations are built into domain-specific 
semantic systems dedicated to processing specific content 
(e.g., intuitive physics, biology, psychology) (Boyer, 1995; 
Gelman, 1990; Wellman & Gelman, 1992; Gerstenberg & 
Tenenbaum, 2017). Even young children have distinct 
‘intuitive theories’ that express specific causal relationships 
(Callanan & Oakes, 1992; Wellman & Gelman, 1992; Gopnik 
& Wellman, 1992; Schult & Wellman, 1997; Keil, 2003). For 
instance, infants view human actions as driven by goals and 
desires, whereas they attribute the movement of inanimate 
objects to physical properties such as continuity and gravity 
(Woodward, 1998; Onishi & Baillargeon, 2005; Saxe et al., 
2005; Baillargeon, 1995; Spelke et al., 1994). It has been 
proposed that domain-specific intuitive theories provide 
‘grammars of causal inference’ that specify abstract causal 
laws (e.g., illness causes symptoms, but symptoms don’t 
cause illness; Tenenbaum et al., 2007; Gerstenberg & 
Tenenbaum, 2017). Thus, causal representations may be 
embedded within domain-specific systems.  
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The current study: inferring illness causality 
The current study uses neuroimaging (fMRI) to offer insight 
into the ‘one vs. many mechanisms’ problem in causal 
reasoning. Cognitive neuroscience is ideally suited to test this 
question because each potentially relevant mechanism is 
associated with a functionally distinct brain network. Here, 
we investigate the automatic causal inferences that people 
make during language comprehension, with a specific focus 
on the universal yet culturally variable phenomenon of 
inferring the causes of illness (Ackerknecht, 1982; Foster, 
1976; Legare & Gelman, 2008; Lock & Nguyen, 2010).  

Illness inferencing offers a key, ecologically relevant test 
case for understanding the contribution of domain-specific 
vs. domain-general mechanisms to causal inference. Illness is 
itself a biological process and could depend on a domain-
specific system, namely ‘intuitive biology’ (Inagaki & 
Hatano, 2006; Atran, 1998; Medin & Atran, 1999; Keil, 
1992; Keil et al., 1999). Intuitive biology is thought to 
encompass knowledge about the structure and behavior of 
biological entities (e.g., animals, plants), which share certain 
core properties such as reproduction, growth, and 
heterogeneous internal structure (Keil, 1992). Evidence for 
the domain-specificity of the biological system comes from 
studies showing that infants and young children have distinct 
intuitions about the properties of living vs. nonliving things, 
e.g., living things have different insides and need energy to 
grow (Gelman, 1988; Simons & Keil, 1995; Setoh et al., 
2013; Inagaki & Hatano, 2004). Young children additionally 
distinguish biological from psychological processes, for 
instance favoring biological over psychological/moral 
explanations for illness (Springer & Ruckel, 1992; Notaro, 
Gelman, & Zimmerman, 2001; Raman & Winer, 2004; 
Legare & Gelman, 2008).  

Although illness exclusively affects biological entities, 
reasoning about illness causality can draw upon multiple 
semantic domains, including physical, social, and in some 
cases even mentalistic knowledge (e.g., smoking causes 
cancer; interacting with sick people causes a cold; evil eye of 
a neighbor causes fever; Legare et al., 2012; Legare & 
Shtulman, 2018). Some explanations of illness reference 
multiple domains simultaneously (e.g., negative emotions 
cause blocked arteries, which cause heart attack; Lynch & 
Medin, 2006; Legare & Gelman, 2008). Variability in the 
semantic domains referenced in illness explanations, both 
within and across cultures (e.g., Foster, 1976) suggests that a 
domain-general causal mechanism may be needed to pool 
together such disparate knowledge during causal inferencing.  

Recent neuroimaging evidence has identified a potential 
neural substrate of biological knowledge in the precuneus 
(PC) (Fairhall & Caramazza, 2013a, 2013b; Fairhall et al., 
2014; Peer et al., 2015; Deen & Freiwald, 2022; Hauptman, 
Elli, et al., 2023). We hypothesized that if inferring the causes 
of illness depends on a domain-specific system, it would 
selectively activate the animacy-preferring PC (see pre-
registration). The PC was originally identified as part of the 

mentalizing network (Saxe & Kanwisher, 2003; Saxe et al., 
2006). However, unlike some other parts of this network, the 
PC is not selective for mental state content (Saxe & 
Kanwisher, 2003; Saxe & Wexler, 2005), instead activating 
when people reason about humans and animals in ways that 
do not require mentalizing (e.g., judging semantic category 
membership; Fairhall & Caramazza, 2013b). These findings 
suggest that the PC encodes biological knowledge. 

Different proposals have been offered regarding what 
cognitive systems might support a domain-general causal 
mechanism. One possibility is that causal inferencing is 
supported by general logical reasoning abilities (Khemlani, 
Barbey, & Johnson-Laird, 2014), which enable a variety of 
non-causal inferences (e.g., disjunctive syllogism: P or Q, not 
P, therefore Q; Lea, 1995; Mody & Carey, 2016; Cesana-
Arlotti, Kovács, & Téglás, 2020). Prior work on logical 
fallacies made during causal inferencing tasks has motivated 
its portrayal as a form of both deductive and inductive logical 
reasoning (Goldvarg & Johnson-Laird, 2001; Johnson-Laird 
& Khemlani, 2017; see Waldmann & Hagmayer, 2013 for a 
review). Logical reasoning selectively activates a 
frontoparietal network (Reverberi et al., 2007; Monti, 
Parsons, & Osherson, 2009; Monti & Osherson, 2012), 
inspiring the claim that logic-responsive frontal cortex is the 
seat of causal thinking (Khemlani et al., 2014; Operskalski & 
Barbey, 2017). 

Language is another candidate system that could support 
causal inferencing (Kuperberg et al., 2006; Mason & Just, 
2011; Prat et al., 2011). It has been suggested that language 
enables humans to combine information from otherwise 
encapsulated semantic domains (e.g., intuitive physics, social 
cognition; Spelke, 2003; 2022), a process that appears to 
underlie many instances of causal inference (Legare & 
Shtulman, 2018). Natural languages are efficient transmitters 
of causal information (Pinker, 2003; Tooby & DeVore, 1987; 
Solstad & Bott, 2017), especially culturally accumulated 
knowledge about imperceptible causes, such as in the case of 
illness (Harris & Koenig, 2006; Legare & Gelman, 2008; 
Legare et al., 2012). Importantly, language processing 
selectively activates a left-lateralized frontotemporal brain 
network (e.g., Fedorenko et al., 2010) that dissociates from 
the frontoparietal logic network (e.g., Monti et al., 2009), 
allowing us to assess the unique contributions of each system.  

To investigate the neurocognitive mechanisms underlying 
illness inferencing, we showed participants two-sentence 
vignettes about human agents that either elicited causal 
inferences about illness (Illness-Causal), elicited causal 
inferences about a non-illness domain (i.e., mechanical 
failure; Mechanical-Causal), or contained illness-related 
language but were not causally connected (Noncausal). The 
same participants also performed a language and logic 
localizer task. If causal representations are built into domain-
specific knowledge systems, inferring illness causality but 
not mechanical causality should activate PC. Alternatively, if 
a domain-general causal mechanism enables causal 
inferencing, we should observe a preference for both Causal 
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conditions compared to Noncausal stimuli in the language 
and logical reasoning networks. It is additionally possible that 
there is a distinct neural circuit dedicated to causal 
inferencing in frontal cortex, which is important for high-
level reasoning (e.g., Collins & Koechlin, 2012; Donoso, 
Collins, & Koechlin, 2014). We test this last possibility using 
whole-cortex analysis. 

Method 

Open science practices 
Our methods and analytical procedures were pre-registered 
prior to data collection (https://osf.io/cx9n2/). 

Participants 
Twenty adults (7 females, 13 males, 25-37 years old, M = 29 
years ± 3 SD, all with or pursuing graduate degrees) 
participated in the study. Two additional participants were 
excluded from the final dataset due to head motion (>2 mm) 
and an image artifact. All participants were screened for 
cognitive/neurological disabilities (self-report). Participants 
gave written informed consent and were compensated $30 per 
hour. The study was approved by the Johns Hopkins 
Medicine Institutional Review Boards. 

Causal inferencing experiment 
Stimuli Participants read two-sentence vignettes in 4 
conditions, 2 Causal and 2 Noncausal (Figure 1C). Each 
vignette focused on a human agent. The first sentence 
described something the agent did or experienced and served 
as the potential cause. The second sentence described the 
potential outcome (e.g., Kelly shared plastic toys with a sick 
toddler at her preschool. Now she has a case of chickenpox). 
Illness-Causal vignettes elicited inferences about biological 
causes of illness, including transmission of pathogens, 
exposure to environmental toxins, and genetic mutations. 
Mechanical-Causal vignettes elicited inferences about 
physical causes of mechanical damage to inanimate objects 
(e.g., houses, jewelry). 2 Noncausal conditions used the same 
sentences as in the Illness-Causal and Mech-Causal 
conditions but in a shuffled order: illness cause with 
mechanical outcome (Noncausal-Illness First) or mechanical 
cause with illness outcome (Noncausal-Mech First). Explicit 
causality judgments collected from a separate group of online 
participants (n=26) verified that both Causal conditions were 
more causal than Noncausal conditions, t(25) = 36.97, p < 
.0001. In addition, Illness-Causal and Mech-Causal items 
were equally causal, t(25) = -0.64, p = 0.53.  

Illness-Causal and Mech-Causal vignettes were 
constructed in pairs, such that each member of a given pair 
shared parallel or near-parallel phrase structure. All 4 
conditions were also matched (pairwise t-tests, all ps > 0.3, 
no statistical correction) on linguistic variables known to 
modulate activity in language regions (e.g., Pallier, 
Devauchelle, & Dehaene, 2011; Shain, Blank, et al., 2020): 

number of characters, number of words, average number of 
characters per word, average word frequency, average bigram 
surprisal (https://books.google.com/ngrams/), and average 
syntactic dependency length (Stanford Parser; de Marneffe, 
MacCartney, & Manning, 2006).  

 
Procedure We used a magic detection task to encourage 
participants to process the meaning of the stimuli without 
making explicit causality judgments. Participants saw 
‘magical’ catch trials that closely resembled the experimental 
trials but were fantastical (e.g., drinking lava). On each trial, 
participants indicated via button press whether ‘something 
magical’ occurred in the vignette (Yes/No). Both sentences 
in a vignette were presented simultaneously, one above the 
other (7 s), followed by an inter-trial interval (12 s). Each 
participant saw 38 trials per condition plus 36 ‘magical’ catch 
trials (188 total trials) in one of two versions, counterbalanced 
across participants, such that individual participants did not 
see the same sentence in both Causal and Noncausal 
conditions. The experiment was divided into 6 10-minute 
runs containing a similar number of trials per condition per 
run presented in a pseudorandom order.  

Language/logic localizer experiment 
A localizer task was used to identify the language and logic 
networks in each participant. The task had three conditions: 
language, formal logic, and math. Participants judged 
whether two visually presented sentences, one in active and 
one in passive voice, shared the same meaning (language), 
whether two logical statements were consistent (logic; e.g., If 
either not Z or not Y then X vs. If not X then both Z and Y), or 
whether a variable had the same value across two equations 
(math; for details see Liu et al., 2020). Each trial lasted 20 s. 
Following prior studies, the language network was identified 
by contrasting language > math and the logic network by 
contrasting logic > language (Liu et al., 2020; Kanjlia et al., 
2016; Monti et al., 2009). The use of functional localizers 
represents an improvement upon past fMRI studies of causal 
inferencing, which rely on anatomical landmarks to make 
inferences about relevant cognitive processes. 

fMRI methods 
Acquisition and preprocessing Whole-brain fMRI data was 
acquired on a 3T Phillips Achieva Multix X-Series scanner at 
F.M. Kirby Research Center. T1-weighted structural images 
were collected in 150 axial slices with 1 mm isotropic voxels 
using the magnetization-prepared rapid gradient-echo (MP-
RAGE) sequence. T2*-weighted functional BOLD scans 
were collected in 36 axial slices (2.4 2.43 mm voxels, TR=2 
s). Preprocessing included motion correction, high-pass 
filtering (128 s), mapping to the cortical surface (Freesurfer), 
spatially smoothing on the surface (6 mm FWHM Gaussian 
kernel), and prewhitening to remove temporal 
autocorrelation. Covariates of no interest included signal 
from white matter, cerebral spinal fluid, and motion spikes. 
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Whole-cortex analysis For the main causal inferencing 
experiment, the GLM modeled the four main conditions 
(Illness-Causal, Mech-Causal, Noncausal-Illness First, 
Noncausal-Mech First) and the magic catch trials during the 
7 s display of the vignettes after convolving with a canonical 
hemodynamic response function and its first temporal 
derivative. For the language/logic localizer experiment, a 
separate predictor was included for each condition (language, 
logic, math) during the 20 s display of the stimuli. 

Runs were modeled separately and combined within-
subject using a fixed-effects model (Dale, Fischl, & Sereno, 
1999; Smith et al., 2004). Group-level random-effects 
analyses were corrected for multiple comparisons across the 
whole cortex at p < .05 family-wise error rate (FWER) using 
a nonparametric permutation test (cluster-forming threshold 
p < .01 uncorrected) (Winkler et al., 2014; Eklund, Nichols, 
& Knutsson, 2016; Eklund, Knutsson, & Nichols, 2019). A 
control analysis modeling response time and number of 
people in each vignette revealed equivalent results. We thus 
report only the results of the model without the covariates. 

  
Individual-subject ROI analysis (univariate) We defined 
individual-subject functional ROIs in the animacy (PC), 
language (frontal and temporal) and logic (frontoparietal) 
networks. Domain-specific animacy ROIs were created in a 
left PC mask previously shown to respond to social 
information (Dufour et al., 2013). We used an iterated leave-
one-run-out procedure, which allowed us to perform sensitive 
individual-subjects analysis while avoiding circular analysis 
(Vul & Kanwisher, 2011). In each participant, we identified 
the most illness inferencing-responsive voxels in the PC 
mask (top 5% of voxels, Illness-Causal > Mech-Causal) in 5 
of the 6 runs and extracted percent signal change (PSC) for 
each condition compared to rest in the held-out run (Illness-
Causal, Mech-Causal, Noncausal-Illness First, Noncausal-
Mech First). For all analyses, PSC was extracted and 
averaged over the entire duration of the trial (17 s total), 
allowing 4 s to account for the hemodynamic lag. 

Language ROIs were identified by taking the most 
language-responsive voxels (top 5%) in left frontal and 
temporal language areas (group search space: Fedorenko et 
al., 2010) using the language > math contrast. A logic-
responsive ROI was identified by taking the most logic-
responsive voxels (top 5%) in the left frontoparietal network 
(group search space: Liu et al., 2020) using the logic > 
language contrast. We then extracted the PSC for each of the 
four main conditions. 

 
MVPA We performed MVPA (Hanke et al., 2009) to test 
whether patterns of activity in the PC distinguished illness 
inferencing from mechanical inferencing. In each participant, 
we identified the top 300 voxels most responsive to causal 
inferencing across domains (i.e., both Illness-Causal + 
Mech-Causal > Rest) in a left PC mask (Dufour et al., 2013). 
For each voxel in each participant’s causal PC ROI, we 
obtained one observation per condition per run (z-scored beta 
parameter estimate of the GLM). A linear support vector 

machine was then trained and tested on the data using cross-
validation. We compared classifier performance to chance 
(50%, one-tailed test) using an empirical null distribution 
generated via a permutation and bootstrap approach 
(Schreiber & Krekelberg, 2013; Stelzer et al., 2013).  

Results 

Behavioral results 
Accuracy on the magic detection task was at ceiling (M = 
97.9% ± 2.2 SD) and there were no significant differences 
across the 4 main experimental conditions (Illness-Causal, 
Mech-Causal, Noncausal-Illness First, Noncausal-Mech 
First), F(3,57) = 2.39, p = .08. A one-way repeated measures 
ANOVA evaluating response time revealed a main effect of 
condition, F(3,57) = 32.63, p < .0001, whereby participants 
were faster on Illness-Causal trials (M = 4.73 ± 0.81 SD) 
compared to Noncausal-Illness First (M = 5.33 s ± 0.85 SD) 
and Noncausal-Mech First (M = 5.27 s ± 0.89 SD). There 
were no differences in response time between Mech-Causal 
(M = 5.15 s ± 0.88 SD) and any other conditions. Accuracy 
on the localizer task was above chance for all conditions and 
all participants and was highest in the language task, followed 
by math and logic (language: M = 98.1% ± 5.8 SD, math:      
M = 93.8% ± 6.4 SD, logic: M = 67.5% ± 14.0 SD).  

Domain-specific responses to illness inferencing in 
precuneus (PC) 
We find that animacy-responsive PC responds selectively to 
causal inferences about illness. Inferring illness causes 
(Illness-Causal) activated the PC more than inferring 
physical causes of mechanical failure (Mech-Causal) (one-
way repeated measures ANOVA, F(1,19) = 28.69, p < 
.0001). Illness inferencing additionally activated the PC more 
than illness-related language that was not causally connected 
(both Noncausal conditions) (one-way repeated measures 
ANOVA, F(1,19) = 13.23, p = .002) (Figure 1A). MVPA 
likewise revealed that responses to Illness-Causal and Mech-
Causal vignettes produced spatially distinguishable neural 
patterns in left PC, t(19) = 3.50, p < .001. 

In whole-cortex analysis, the PC was the only cortical 
region to show a preference for causal inferencing about 
illness. Illness inferencing activated the PC more than causal 
inferencing about a non-illness domain (Mech-Causal 
condition) and more than both Noncausal conditions (p < .05, 
corrected for multiple comparisons) (Figure 1B). Responses 
to illness inferencing in PC overlap with previously reported 
responses to people- and animal-related concepts (e.g., 
Fairhall & Caramazza, 2013a; Hauptman, Elli, et al., 2023).  

No evidence for domain-general responses to causal 
inferencing in language or logic networks 
We failed to find increased activity for causal inferencing in 
either the language or logical reasoning networks.  
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Figure 1: Domain-specific responses to illness inferencing in the precuneus (PC). Panel A: Percent signal change (PSC) for 
each condition among the top Illness-Causal > Mech-Causal voxels in a left PC mask (Dufour et al., 2013), established via an 
individual-subjects leave-one-run-out analysis. Panel B: Whole-cortex results for Illness-Causal > Mech-Causal and Illness-
Causal > Noncausal (both versions) contrasts, corrected for multiple comparisons (p < .05 FWER, cluster-forming threshold  
p < .01 uncorrected). Panel C: Example stimuli. ‘Magical’ catch trials similar in meaning and structure (e.g., Sadie forgot to 
wash her face after she ran in the heat. Now she has a cucumber nose.) enabled the use of a semantic ‘magic detection’ task.

If anything, the opposite pattern emerged: individual-subject 
ROI analysis revealed higher activity for both Noncausal 
conditions (Noncausal-Illness First + Noncausal-Mech First) 
compared to both Causal conditions (Illness-Causal + Mech- 
Causal) in both the frontal and temporal language network 
(temporal: one-way repeated measures ANOVA, F(1,19) = 
4.85, p = .04) (Figure 2A). The same effect was marginally 
significant in the logic network, F(1,19) = 3.88, p = .06 
(Figure 2B). These effects likely the reflect the greater 
difficulty associated with integrating unrelated sentences. 

In whole-cortex analysis, we similarly did not observe any 
regions that were active in both the Illness-Causal > 
Noncausal and Mech-Causal > Noncausal contrasts.  

Discussion 
Using illness inferencing as a case study, we find that the 
domain-specific, animacy-preferring precuneus (PC) 
supports causal inferences about illness. Causal inferences 
about illness elicited increased activity in the PC compared 
to both i) causal inferencing about a non-illness domain (i.e., 
mechanical failure) and ii) closely matched but causally 
unconnected sentences. These results suggest that causal 
inferences made during language comprehension rely on 
domain-specific causal mechanisms that are recruited 
depending on the semantic domain in focus.  

Our results fail to provide clear evidence for a domain- 
general mechanism for causal inferencing during language 

comprehension. Using a sensitive functional localization 
approach, we found that neither the language nor the logical 
reasoning networks exhibited a preference for causal 
inferencing. We also found no evidence for a distinct general-
purpose causal inference mechanism outside these networks, 
i.e., a brain region that exhibited a robust preference for 
causal inferencing across both illness and mechanical stimuli. 

With respect to the language network, our findings are 
consistent with prior evidence showing that language areas 
are most sensitive to linguistic input at the level of individual 
clauses/sentences (e.g., Jacoby & Fedorenko, 2020; Blank & 
Fedorenko, 2020). However, our findings contradict a small 
number of past experiments suggesting that the language 
network enables causal inferencing during comprehension 
(Kuperberg et al., 2006; Mason & Just, 2011; Prat et al., 
2011). Unlike in this past work, the causal and noncausal 
stimuli used in our experiment were completely controlled 
for linguistic form: both conditions used the same sentences. 
We hypothesize that the language network responds more to 
causal or non-causal passages depending on which are more 
difficult to process, whether due to increased linguistic 
complexity (e.g., longer sentences) or the behavioral 
pressures imposed by explicit causal judgment tasks (see 
Kuperberg et al., 2006). This pattern does not support the 
hypothesis that the language network is the ‘engine’ for 
causal inferencing during language processing.  
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Figure 2: Individual-subjects analysis of language- and logic-
responsive voxels. Panel A: percent signal change (PSC) for 
each condition among the top 5% most language-responsive 
voxels (language > math) in a temporal language network 
mask (Fedorenko et al., 2010). Panel B: PSC among the top 
5% most logic-responsive voxels (logic > language) in a 
logic network mask (Liu et al., 2020). Group maps for each 
contrast of interest are corrected for multiple comparisons. 
 
   With respect to the logical reasoning network, our results 
suggest that causal inferences elicited during language 
comprehension are supported by different neural mechanisms 
than formal logical reasoning (e.g., If X then Y = If not Y then 
X?). This finding coheres with prior evidence that the logic  
network is specialized for symbolic, ‘content-free’ stimuli, 
such as statements relating variables X and Y as opposed to 
concrete nouns (Monti et al., 2009; Feng et al., 2021).  

Together, the current results suggest that causal inferences 
elicited during language comprehension depend on domain-
specific semantic systems. In the case of illness causality, we 
rely on neural circuits that support biological knowledge 
(e.g., Atran, 1998; Keil, 1992). Whereas prior neuroscience 
work on this system has focused on simple binary judgments 
about words or word pairs (e.g., Fairhall & Caramazza, 
2013a, 2013b; Fairhall et al., 2014; Deen & Freiwald, 2022), 

the current results suggest that this system also encodes rich 
causal and relational information.  

Importantly, multiple domain-specific systems might 
contribute to a single inference. The vignettes used in the 
current study were designed to elicit biological inferences 
familiar to a lay audience. In reality, when faced with 
imperceptible, life-threatening causal processes, people 
across cultures commonly combine knowledge from multiple 
domains to explain the emergence of illness (e.g., contact 
with blood plus witchcraft leads to AIDS; Lynch & Medin, 
2006; Legare & Gelman, 2008; Legare & Shtulman, 2018). 
We hypothesize that different domain-specific systems (e.g., 
biology, theory of mind) become engaged depending on the 
inference. For instance, both the PC and right temporoparietal 
junction (Saxe & Kanwisher, 2003) may become engaged 
when making the above inference. Relatedly, given vast 
differences in ideas about illness causality across cultures 
(e.g., germ theory, divine retribution, vitalism), future work 
can address how cultural input (e.g., medical education) 
shapes domain-specific responses to illness inferencing. 

Our results do not rule out the possibility that domain-
general mechanisms enable causal inferences under some 
circumstances, even inferences about the causes of illness. 
The vignettes used in the current study stipulate the cause in 
the first sentence, allowing participants to reason from causes 
to effects. By contrast, illness reasoning performed by 
medical experts proceeds from effects to causes and involves 
identifying potential illness causes within highly complicated 
and interconnected causal systems (Schmidt, Norman, & 
Boshuizen, 1990; Norman et al., 2006; Meder & Mayrhofer, 
2017). Future studies should examine whether such complex 
inferences rely on domain-general reasoning systems.  

Another open question not addressed in the current study 
concerns what mechanisms support learning novel causal 
relationships, such as when learning unfamiliar causal 
powers of objects (e.g., ‘blicket detectors’; Gopnik et al., 
2001) or forming new scientific theories about complex 
causal processes (e.g., illness transmission; Lock & Nguyen, 
2010). It is possible that domain-general reasoning 
mechanisms support the discovery of novel causes. However, 
we hypothesize that forming new causal connections may 
also draw upon domain-specific causal knowledge in the 
domain that bears the most resemblance to the novel process. 
Future neuroimaging work can help test these possibilities.  

Conclusion 
The current results suggest that causal inferences during 
language comprehension rely on domain-specific neural 
machinery. In the case of illness inferencing, a domain-
specific system for biological knowledge becomes engaged. 
By contrast, we find no evidence for a neural mechanism that 
is domain-general and operates regardless of semantic 
domain, either in the language system itself, the logical 
reasoning system, or anywhere else in the brain. Our results 
support the hypothesis that, at least for simple cases, causal 
inferences are supported by neural substrates that represent 
domain-specific semantic information. 
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